The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

GeoComplexity Calculation

Calculation methods of geographical complexity

The formula for shannon entropy is as follows:

\[ H(X) = - \sum_{i=1}^{n} p(x_i) \log_b p(x_i) \]

Where \(H(X)\) is entropy of the random variable \(X\), \(p(x_i)\) is probability of the random variable \(X\) taking the value \(x_i\), \(n\)is number of possible values that \(X\) can take, \(b\) is the base of the logarithm, which can be 2 (for bits), \(e\) (natural logarithm, for nats), or 10 (for dits).

The spatial variance is calculated as:

\[ \Gamma = \frac{\sum_i \sum_{j \neq i} \omega_{ij}\frac{(y_i-y_j)^2}{2}}{\sum_i \sum_{j \neq i} \omega_{ij}} \]

where \(\omega_{ij}\) is the weight between \(i\)-th location and \(j\)-th location; \(y_i\) and \(y_j\) are the dependent variable values at the \(i\)-th and \(j\)-th locations respectively.

The geographical configuration similarity is calculated as:

\[ S({\bf u}_{\alpha},{\bf v}_{\beta})=min\{E_{i}(e_{i}({\bf u}_{\alpha}),e_{i}({\bf v}_{\beta}))\} \]

\[ E_{i}({\bf u}_{\alpha},{\bf v}_{\beta})=\exp\left(-{\frac{\left(e_{i}({\bf u}_{\alpha})-e_{i}({\bf v}_{\beta})\right)^{2}}{2\left(\sigma^{2}/\delta({\bf v}_{\beta})\right)^{2}}}\right) \]

\[ \delta({\bf u}_{\alpha},{\bf v})=\sqrt{\frac{\sum_{\beta=1}^{n}(e({\bf u}_{\alpha})-e({\bf v}_{\beta}))^{2}}{n}} \]

Considering the geographical complexity with spatial local dependencies

The formula for geocomplexity which uses local moran measure method is

\[ \rho_i = -\frac{1}{m} Z_i \sum\limits_{j=1}^m W_{ij} Z_j -\frac{1}{m} \sum\limits_{j=1}^m W_{ij} Z_j \frac{1}{V_{k}}\sum\limits_{k=1}^n W_{jk} W_{ik} Z_k \]

The formula for geocomplexity which uses spatial fluctuation measure method is

\[ \rho_i = Spatial\_Variance(z_i,z_j) \]

The formula for geocomplexity which uses shannon entropy measure method is

\[ \rho_i = Shannon\_Entropy(Z_i,Z_j) \]

Considering the geographical complexity with geographical configurations similarities

Firstly, calculate global similarity:

\[ S = CosineSimilarity(Z_i,Z_j) \]

or

\[ S = GeographicalConfigurationsSimilarity(Z_i,Z_j) \]

The geographic complexity is then calculated:

The formula for geocomplexity which uses spatial fluctuation measure method is

\[ \rho_i = Spatial\_Variance(S_i,S_j) \]

The formula for geocomplexity which uses shannon entropy measure method is

\[ \rho_i = Shannon\_Entropy(S_i,S_j) \]

Cases for computing geographical complexity

Geographical Complexity of Individual Variables

library(sf)
library(geocomplexity)
library(ggplot2)
library(viridis)
library(patchwork)
econineq = sf::read_sf(system.file('extdata/econineq.gpkg',package = 'geocomplexity'))
gc = geocd_vector(econineq)
gc
## Simple feature collection with 333 features and 9 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 112.9211 ymin: -43.63311 xmax: 153.6299 ymax: -9.223927
## Geodetic CRS:  GDA94
## # A tibble: 333 × 10
##    GC_Gini GC_Induscale GC_IT GC_Income GC_Sexrat GC_Houseown GC_Indemp GC_Indcom GC_Hiedu
##      <dbl>        <dbl> <dbl>     <dbl>     <dbl>       <dbl>     <dbl>     <dbl>    <dbl>
##  1   0.899        0.922 0.945     0.952     0.845       0.906     0.858     0.889    0.924
##  2   0.895        0.919 0.849     0.925     0.770       0.825     0.853     0.872    0.877
##  3   0.922        0.919 0.861     0.914     0.729       0.759     0.888     0.911    0.877
##  4   0.921        0.919 0.834     0.949     0.775       0.807     0.892     0.911    0.863
##  5   0.850        0.924 0.830     0.930     0.778       0.889     0.863     0.886    0.843
##  6   0.944        0.920 0.873     0.956     0.782       0.856     0.865     0.929    0.858
##  7   0.910        0.921 0.891     0.957     0.799       0.865     0.809     0.912    0.834
##  8   0.924        0.919 0.817     0.938     0.810       0.834     0.910     0.911    0.867
##  9   0.929        0.919 0.663     0.901     0.768       0.837     0.911     0.914    0.773
## 10   0.918        0.919 0.841     0.957     0.758       0.863     0.927     0.918    0.823
## # ℹ 323 more rows
## # ℹ 1 more variable: geometry <MULTIPOLYGON [°]>
plot_geocd = \(.x){
  ggplot(gc) +
   geom_sf(aes(fill = gc[,.x,drop = TRUE])) +
   scale_fill_viridis(option = "mako", direction = -1,name = "") +
   theme_bw()
}

fig1 = names(gc)[1:9] %>%
  purrr::map(plot_geocd) %>%
  wrap_plots(ncol = 3, byrow = TRUE,
             guides = "collect") +
  plot_annotation(tag_levels = 'a',
                  tag_prefix = '(',
                  tag_suffix = ')',
                  tag_sep = '',
                  theme = theme(plot.tag = element_text(family = "serif"),
                                plot.tag.position = "topleft"))
fig1
Figure 1. (a) through (i) represent the computed geographical complexity for variable Gini,Induscale,IT,Income,Sexrat,Houseown,Indemp,Indcom and Hiedu.
Figure 1. (a) through (i) represent the computed geographical complexity for variable Gini,Induscale,IT,Income,Sexrat,Houseown,Indemp,Indcom and Hiedu.

Geographical Complexity of Multiple Variables

gc_multi = geocs_vector(dplyr::select(econineq,-Gini))
gc_multi
## Simple feature collection with 333 features and 1 field
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 112.9211 ymin: -43.63311 xmax: 153.6299 ymax: -9.223927
## Geodetic CRS:  GDA94
## # A tibble: 333 × 2
##       GC                                                                              geometry
##    <dbl>                                                                    <MULTIPOLYGON [°]>
##  1 0.210 (((149.979 -35.50246, 149.9774 -35.49025, 149.9987 -35.47874, 150.0059 -35.46051, 15…
##  2 0.155 (((148.8041 -35.71402, 148.782 -35.73665, 148.7666 -35.70281, 148.7535 -35.6878, 148…
##  3 0.147 (((150.3754 -35.56524, 150.3725 -35.55018, 150.36 -35.53485, 150.2819 -35.5241, 150.…
##  4 0.213 (((149.0114 -33.93276, 149.0057 -33.94396, 149.013 -33.96863, 149.0114 -33.98291, 14…
##  5 0.184 (((147.7137 -34.16162, 147.7126 -34.17681, 147.728 -34.18633, 147.7443 -34.1801, 147…
##  6 0.353 (((151.485 -33.39868, 151.4645 -33.39985, 151.4539 -33.37713, 151.4415 -33.38963, 15…
##  7 0.307 (((151.485 -33.39868, 151.4839 -33.38366, 151.5049 -33.35415, 151.499 -33.33902, 151…
##  8 0.214 (((149.323 -33.05916, 149.3147 -33.10072, 149.3226 -33.1168, 149.3171 -33.14661, 149…
##  9 0.133 (((149.1264 -33.86642, 149.1349 -33.85089, 149.1314 -33.83058, 149.1155 -33.79723, 1…
## 10 0.180 (((150.5587 -32.75774, 150.5411 -32.75426, 150.527 -32.75969, 150.5182 -32.74934, 15…
## # ℹ 323 more rows
fig2 = ggplot(gc_multi) +
   geom_sf(aes(fill = GC)) +
   scale_fill_viridis(option = "mako", direction = -1) +
   theme_bw()
fig2
Figure 2. The comprehensive geographical complexity of variables Gini, Induscale, IT, Income, Sexrat, Houseown, Indemp, Indcom and Hiedu.
Figure 2. The comprehensive geographical complexity of variables Gini, Induscale, IT, Income, Sexrat, Houseown, Indemp, Indcom and Hiedu.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.