The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The analyze_crop_vegetation() function returns a nested
list with three main components containing comprehensive crop analysis
results.
result <- analyze_crop_vegetation(
spectral_data = your_data,
crop_type = "corn",
analysis_type = "comprehensive"
)
# Structure:
result$vegetation_indices # SpatRaster with calculated indices
result$analysis_results # Detailed analysis results
result$metadata # Processing metadataType: terra::SpatRaster object (multi-layer)
Description: A raster stack containing all calculated vegetation indices for the specified crop type.
Contents: - Each layer is a different vegetation index (NDVI, EVI, GNDVI, etc.) - Values are the actual index calculations for each pixel - Layer names correspond to the index abbreviations
Example Access:
# View all calculated indices
names(result$vegetation_indices)
# [1] "NDVI" "EVI" "GNDVI" "DVI" "RVI" "PRI"
# Extract a specific index
ndvi <- result$vegetation_indices[["NDVI"]]
# Plot an index
plot(result$vegetation_indices[["NDVI"]], main = "NDVI")
# Get values for analysis
ndvi_values <- terra::values(result$vegetation_indices[["NDVI"]])Type: Named list with up to 5 components depending
on analysis_type
Purpose: Identifies vegetation stress based on index thresholds
Structure:
Contents for each index analyzed (e.g., NDVI, EVI, SIPI, GNDVI):
| Field | Type | Description | Example |
|---|---|---|---|
healthy_percentage |
numeric | % of pixels classified as healthy vegetation | 65.3 |
moderate_stress_percentage |
numeric | % of pixels showing moderate stress | 25.1 |
severe_stress_percentage |
numeric | % of pixels showing severe stress | 9.6 |
mean_value |
numeric | Mean index value across all pixels | 0.72 |
median_value |
numeric | Median index value | 0.74 |
std_dev |
numeric | Standard deviation of index values | 0.15 |
thresholds_used |
list | The threshold values used for classification | See below |
total_pixels_analyzed |
integer | Total number of valid pixels | 125000 |
Threshold Structure:
result$analysis_results$stress_analysis$NDVI$thresholds_used
# $healthy: c(0.6, 1.0) # NDVI 0.6-1.0 = healthy
# $moderate_stress: c(0.4, 0.6) # NDVI 0.4-0.6 = moderate stress
# $severe_stress: c(0.0, 0.4) # NDVI 0.0-0.4 = severe stressInterpretation: - Healthy: Vegetation is growing normally, adequate water/nutrients - Moderate Stress: Some stress present, may indicate water deficit or nutrient issues - Severe Stress: Significant stress, requires immediate attention
Example Usage:
# Access stress results for NDVI
ndvi_stress <- result$analysis_results$stress_analysis$NDVI
# What percentage of my field is healthy?
cat(sprintf("Healthy vegetation: %.1f%%\n", ndvi_stress$healthy_percentage))
# What's the average NDVI?
cat(sprintf("Mean NDVI: %.3f\n", ndvi_stress$mean_value))
# Check all indices analyzed
names(result$analysis_results$stress_analysis)Purpose: Estimates crop growth stage and provides growth statistics
Structure:
Contents:
| Field | Type | Description | Example |
|---|---|---|---|
mean |
numeric | Mean index value | 0.68 |
median |
numeric | Median index value | 0.70 |
std_dev |
numeric | Standard deviation | 0.12 |
min |
numeric | Minimum value | 0.15 |
max |
numeric | Maximum value | 0.92 |
range |
numeric | Max - Min | 0.77 |
percentiles |
numeric vector | 10th, 25th, 75th, 90th percentiles | c(0.45, 0.58, 0.78, 0.85) |
coefficient_of_variation |
numeric | std_dev / mean (measure of variability) | 0.18 |
n_pixels |
integer | Number of pixels analyzed | 125000 |
| Field | Type | Description | Example |
|---|---|---|---|
predicted_growth_stage |
character | Predicted crop growth stage | “reproductive” |
stage_confidence |
numeric | Confidence in prediction (0-1) | 0.85 |
crop_type_used |
character | Crop type used for classification | “corn” |
Growth Stage Classifications:
For Corn: - “emergence”: NDVI < 0.3 - “vegetative”: NDVI 0.3-0.6 - “reproductive”: NDVI 0.6-0.8 - “maturity”: NDVI > 0.8
For Soybeans: - “emergence”: NDVI < 0.4 - “vegetative”: NDVI 0.4-0.65 - “reproductive”: NDVI 0.65-0.8 - “maturity”: NDVI > 0.8
For Wheat: - “tillering”: NDVI < 0.35 - “stem_elongation”: NDVI 0.35-0.7 - “grain_filling”: NDVI 0.7-0.8 - “maturity”: NDVI > 0.8
Example Usage:
# What growth stage is the crop in?
growth <- result$analysis_results$growth_analysis
cat(sprintf("Growth stage: %s (confidence: %.2f)\n",
growth$predicted_growth_stage,
growth$stage_confidence))
# Get detailed NDVI statistics
ndvi_stats <- growth$NDVI
cat(sprintf("NDVI range: %.3f - %.3f\n", ndvi_stats$min, ndvi_stats$max))
cat(sprintf("NDVI variability (CV): %.3f\n", ndvi_stats$coefficient_of_variation))Purpose: Estimates yield potential using multiple vegetation indices
Structure:
Contents:
| Field | Type | Description | Example |
|---|---|---|---|
composite_yield_index |
numeric | Normalized yield potential score (0-1) | 0.72 |
yield_potential_class |
character | Categorical yield potential | “High” |
indices_used |
character vector | Which indices contributed | c(“NDVI”, “EVI”, “GNDVI”) |
n_indices_used |
integer | Number of indices used | 3 |
index_contributions |
list | Individual index contributions | See below |
crop_type |
character | Crop type used | “corn” |
classification_confidence |
numeric | Confidence in classification (0-1) | 0.44 |
Index Contributions Structure:
result$analysis_results$yield_analysis$index_contributions$NDVI
# $mean_normalized: 0.75 # Normalized contribution (0-1)
# $raw_mean: 0.68 # Raw mean NDVI value
# $raw_std: 0.12 # Raw standard deviationComposite Yield Index Calculation: 1. Each index
(NDVI, EVI, GNDVI, DVI, RVI) is normalized to 0-1 scale 2. Normalized
values are averaged across all available indices 3. Result is a single
0-1 score where: - 0.0 = Very low yield potential - 0.5 = Medium yield
potential
- 1.0 = Maximum yield potential
Yield Potential Classifications:
For Corn: - “Low”: composite_index < 0.3 - “Medium”: composite_index 0.3-0.6 - “High”: composite_index 0.6-0.8 - “Very High”: composite_index > 0.8
For Soybeans: - “Low”: composite_index < 0.35 - “Medium”: composite_index 0.35-0.65 - “High”: composite_index 0.65-0.85 - “Very High”: composite_index > 0.85
For Wheat: - “Low”: composite_index < 0.3 - “Medium”: composite_index 0.3-0.6 - “High”: composite_index 0.6-0.8 - “Very High”: composite_index > 0.8
Interpretation: - Composite Yield Index (0.0-1.0): Higher values indicate better yield potential - Yield Potential Class: Categorical assessment for easier interpretation - Index Contributions: Shows which indices contributed and their individual scores - Classification Confidence: Higher when composite_index is far from class boundaries (e.g., 0.2 or 0.9 are more confident than 0.5)
Example Usage:
# What's the yield potential?
yield <- result$analysis_results$yield_analysis
cat(sprintf("Yield Potential: %s (score: %.2f)\n",
yield$yield_potential_class,
yield$composite_yield_index))
# Which indices contributed?
cat(sprintf("Based on %d indices: %s\n",
yield$n_indices_used,
paste(yield$indices_used, collapse = ", ")))
# Get individual index contributions
for (idx in names(yield$index_contributions)) {
contrib <- yield$index_contributions[[idx]]
cat(sprintf("%s: %.3f (raw: %.3f ± %.3f)\n",
idx,
contrib$mean_normalized,
contrib$raw_mean,
contrib$raw_std))
}Purpose: Basic statistical summary for all calculated indices
Structure:
Contents for each index:
| Field | Type | Description |
|---|---|---|
mean |
numeric | Mean value across all pixels |
median |
numeric | Median value |
std_dev |
numeric | Standard deviation |
min |
numeric | Minimum value |
max |
numeric | Maximum value |
count |
integer | Number of valid pixels |
na_count |
integer | Number of NA pixels |
range |
numeric | Max - Min |
cv |
numeric | Coefficient of variation (std_dev/mean) |
percentiles |
numeric vector | 5th, 25th, 75th, 95th percentiles |
coverage_percent |
numeric | % of total pixels with valid data |
histogram |
list (optional) | Histogram data if ≥100 pixels |
Plus Overall Summary:
result$analysis_results$summary_statistics$summary
# $total_indices_calculated: 6
# $indices_with_valid_data: c("NDVI", "EVI", "GNDVI", ...)
# $total_indices_requested: 6
# $success_rate: 100.0Example Usage:
# Get statistics for all indices
stats <- result$analysis_results$summary_statistics
# NDVI statistics
ndvi_stats <- stats$NDVI
cat(sprintf("NDVI: %.3f ± %.3f (range: %.3f to %.3f)\n",
ndvi_stats$mean,
ndvi_stats$std_dev,
ndvi_stats$min,
ndvi_stats$max))
# Check data quality
cat(sprintf("Coverage: %.1f%% (%d pixels)\n",
ndvi_stats$coverage_percent,
ndvi_stats$count))Purpose: Validates analysis against ground truth data
Note: This component only appears if you provide reference_data parameter
Structure: TBD (depends on reference data format)
Purpose: Documents analysis parameters and processing information
Structure:
Contents:
| Field | Type | Description | Example |
|---|---|---|---|
crop_type |
character | Crop type analyzed | “corn” |
growth_stage |
character | Growth stage specified | “mid” |
analysis_type |
character | Type of analysis performed | “comprehensive” |
indices_used |
character vector | Indices calculated | c(“NDVI”, “EVI”, …) |
processing_date |
POSIXct | When analysis was performed | 2025-11-03 10:30:45 |
input_bands |
integer | Number of input spectral bands | 8 |
spatial_resolution |
numeric vector | Resolution (x, y) in map units | c(10, 10) |
spatial_extent |
numeric vector | Extent (xmin, xmax, ymin, ymax) | c(-95.5, -95.0, 41.5, 42.0) |
Example Usage:
# Check what was analyzed
meta <- result$metadata
cat(sprintf("Analyzed %s at %s growth stage\n",
meta$crop_type,
meta$growth_stage))
cat(sprintf("Used %d indices: %s\n",
length(meta$indices_used),
paste(meta$indices_used, collapse = ", ")))
cat(sprintf("Processed on: %s\n", meta$processing_date))library(geospatialsuite)
library(terra)
# Run comprehensive crop analysis
result <- analyze_crop_vegetation(
spectral_data = "path/to/sentinel2_data.tif",
crop_type = "corn",
growth_stage = "mid",
analysis_type = "comprehensive",
verbose = TRUE
)
# ===== 1. Check what was calculated =====
cat("Indices calculated:\n")
print(names(result$vegetation_indices))
# ===== 2. Assess crop stress =====
stress <- result$analysis_results$stress_analysis$NDVI
cat(sprintf("\nStress Assessment:\n"))
cat(sprintf(" Healthy: %.1f%%\n", stress$healthy_percentage))
cat(sprintf(" Moderate stress: %.1f%%\n", stress$moderate_stress_percentage))
cat(sprintf(" Severe stress: %.1f%%\n", stress$severe_stress_percentage))
# ===== 3. Identify growth stage =====
growth <- result$analysis_results$growth_analysis
cat(sprintf("\nGrowth Stage: %s (%.0f%% confidence)\n",
growth$predicted_growth_stage,
growth$stage_confidence * 100))
# ===== 4. Estimate yield potential =====
yield <- result$analysis_results$yield_analysis
cat(sprintf("\nYield Potential: %s\n", yield$yield_potential_class))
cat(sprintf("Composite Yield Index: %.3f\n", yield$composite_yield_index))
cat(sprintf("Based on %d indices: %s\n",
yield$n_indices_used,
paste(yield$indices_used, collapse = ", ")))
# ===== 5. Visualize results =====
# Plot stress map
plot(result$vegetation_indices[["NDVI"]],
main = "NDVI - Stress Detection",
col = terrain.colors(100))
# Create stress classification map
ndvi <- result$vegetation_indices[["NDVI"]]
stress_map <- classify(ndvi,
matrix(c(-Inf, 0.4, 1, # Severe stress
0.4, 0.6, 2, # Moderate stress
0.6, Inf, 3), # Healthy
ncol = 3, byrow = TRUE))
plot(stress_map,
main = "Crop Stress Classification",
col = c("red", "yellow", "green"),
legend = FALSE)
legend("topright",
legend = c("Severe Stress", "Moderate Stress", "Healthy"),
fill = c("red", "yellow", "green"))
# ===== 6. Export results =====
# Save as geotiff
writeRaster(result$vegetation_indices,
"crop_indices.tif",
overwrite = TRUE)
# Save statistics as CSV
stats_df <- data.frame(
Index = names(result$analysis_results$summary_statistics)[-length(names(result$analysis_results$summary_statistics))],
Mean = sapply(result$analysis_results$summary_statistics[1:(length(result$analysis_results$summary_statistics)-1)], function(x) x$mean),
StdDev = sapply(result$analysis_results$summary_statistics[1:(length(result$analysis_results$summary_statistics)-1)], function(x) x$std_dev),
Min = sapply(result$analysis_results$summary_statistics[1:(length(result$analysis_results$summary_statistics)-1)], function(x) x$min),
Max = sapply(result$analysis_results$summary_statistics[1:(length(result$analysis_results$summary_statistics)-1)], function(x) x$max)
)
write.csv(stats_df, "crop_analysis_statistics.csv", row.names = FALSE)# Run analysis for multiple fields and compare
field1_result <- analyze_crop_vegetation(field1_data, crop_type = "corn")
field2_result <- analyze_crop_vegetation(field2_data, crop_type = "corn")
# Compare yield potential
cat(sprintf("Field 1 yield: %s (%.3f)\n",
field1_result$analysis_results$yield_analysis$yield_potential_class,
field1_result$analysis_results$yield_analysis$composite_yield_index))
cat(sprintf("Field 2 yield: %s (%.3f)\n",
field2_result$analysis_results$yield_analysis$yield_potential_class,
field2_result$analysis_results$yield_analysis$composite_yield_index))# Analyze the same field at different dates
early_season <- analyze_crop_vegetation(june_data, growth_stage = "early")
mid_season <- analyze_crop_vegetation(july_data, growth_stage = "mid")
late_season <- analyze_crop_vegetation(august_data, growth_stage = "late")
# Track NDVI progression
ndvi_progression <- c(
early_season$analysis_results$growth_analysis$NDVI$mean,
mid_season$analysis_results$growth_analysis$NDVI$mean,
late_season$analysis_results$growth_analysis$NDVI$mean
)
plot(1:3, ndvi_progression, type = "b",
xlab = "Time Period", ylab = "Mean NDVI",
main = "NDVI Progression Through Season")Important Caveats: 1. Threshold-based: Stress and yield classifications use literature-based thresholds that may need adjustment for your specific region/conditions 2. Composite Yield Index: This is a vegetation-based proxy, not a direct yield prediction. Correlation with actual yield varies by crop, region, and year 3. Growth Stage: Predictions are based on NDVI patterns and may not align perfectly with field observations 4. No guarantee: These are analytical tools to support decision-making, not definitive assessments
Recommended Validation: - Compare with ground truth data (yield monitors, field scouting) - Calibrate thresholds for your specific conditions - Use multiple years of data to establish local patterns - Combine with other data sources (weather, soil, management)
This work was developed by the GeoSpatialSuite team with contributions from: Olatunde D. Akanbi, Vibha Mandayam, Yinghui Wu, Jeffrey Yarus, Erika I. Barcelos, and Roger H. French.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.