The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Complete Workflows and Case Studies

GeoSpatialSuite Development Team

Introduction

The GeoSpatialSuite package provides comprehensive workflow functions that integrate multiple analysis types into complete, automated pipelines. This vignette demonstrates how to build and execute advanced workflows for real-world geospatial analysis scenarios.

Learning Objectives

By the end of this vignette, you will be able to:

Prerequisites

# Load required packages
library(geospatialsuite)
library(terra)
library(sf)

# Verify package functionality
test_geospatialsuite_package_simple(verbose = TRUE)

Comprehensive Workflow Architecture

The package includes pre-built workflows for common analysis scenarios:

NDVI Crop Analysis Workflow

Basic Enhanced NDVI Workflow

# Create sample multi-temporal data
red_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(red_raster) <- runif(6400, 0.1, 0.3)

nir_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(nir_raster) <- runif(6400, 0.4, 0.8)

# Configure comprehensive NDVI analysis
ndvi_config <- list(
  analysis_type = "ndvi_crop_analysis",
  input_data = list(red = red_raster, nir = nir_raster),
  region_boundary = c(-83.5, 40.2, -83.0, 40.7),  # Bounding box
  indices = c("NDVI", "EVI2", "SAVI"),
  quality_filter = TRUE,
  temporal_smoothing = FALSE,
  visualization_config = list(
    create_maps = TRUE,
    ndvi_classes = "none",
    interactive = FALSE
  )
)

# Execute comprehensive workflow
ndvi_workflow_results <- run_comprehensive_geospatial_workflow(ndvi_config)

# Access results
ndvi_data <- ndvi_workflow_results$results$vegetation_data
ndvi_stats <- ndvi_workflow_results$results$statistics
ndvi_maps <- ndvi_workflow_results$results$visualizations

Enhanced NDVI with Crop Masking

# Simulate CDL crop data
cdl_raster <- rast(nrows = 80, ncols = 80, 
                  xmin = -83.5, xmax = -83.0, 
                  ymin = 40.2, ymax = 40.7)
values(cdl_raster) <- sample(c(1, 5, 24, 36, 61), 6400, replace = TRUE)  # Corn, soybeans, wheat, alfalfa, fallow

# Enhanced configuration with crop masking
enhanced_ndvi_config <- list(
  analysis_type = "ndvi_crop_analysis",
  input_data = list(red = red_raster, nir = nir_raster),
  region_boundary = "custom",
  cdl_data = cdl_raster,
  crop_codes = c(1, 5),  # Corn and soybeans only
  indices = c("NDVI", "SAVI", "DVI"),
  quality_filter = TRUE,
  visualization_config = list(
    create_maps = TRUE,
    interactive = FALSE
  )
)

# Run enhanced workflow
enhanced_results <- run_comprehensive_geospatial_workflow(enhanced_ndvi_config)

# Compare masked vs unmasked results
print("Original NDVI stats:")
print(global(ndvi_data, "mean", na.rm = TRUE))
print("Crop-masked NDVI stats:")
print(global(enhanced_results$results$vegetation_data, "mean", na.rm = TRUE))

Comprehensive Vegetation Analysis Workflow

Multi-Index Vegetation Assessment

# Create multi-band spectral data
spectral_stack <- c(
  red_raster,                    # Band 1: Red
  red_raster * 1.2,             # Band 2: Green (simulated)
  red_raster * 0.8,             # Band 3: Blue (simulated)
  nir_raster                     # Band 4: NIR
)
names(spectral_stack) <- c("red", "green", "blue", "nir")

# Configure comprehensive vegetation analysis
vegetation_config <- list(
  analysis_type = "vegetation_comprehensive",
  input_data = spectral_stack,
  indices = c("NDVI", "EVI2", "SAVI", "GNDVI", "DVI", "RVI"),
  crop_type = "general",
  analysis_type_detail = "comprehensive",
  region_boundary = c(-83.5, 40.2, -83.0, 40.7),
  visualization_config = list(
    create_maps = TRUE,
    comparison_plots = TRUE
  )
)

# Execute comprehensive vegetation workflow
vegetation_results <- run_comprehensive_geospatial_workflow(vegetation_config)

# Access detailed results
vegetation_indices <- vegetation_results$results$vegetation_analysis$vegetation_indices
analysis_details <- vegetation_results$results$vegetation_analysis$analysis_results
metadata <- vegetation_results$results$vegetation_analysis$metadata

print("Vegetation indices calculated:")
print(names(vegetation_indices))
print("Analysis metadata:")
print(metadata$indices_used)

Crop-Specific Analysis Workflow

# Corn-specific analysis workflow
corn_config <- list(
  analysis_type = "vegetation_comprehensive",
  input_data = spectral_stack,
  crop_type = "corn",
  analysis_type_detail = "comprehensive",
  cdl_mask = cdl_raster == 1,  # Corn mask
  indices = c("NDVI", "EVI2", "GNDVI"),  # Corn-appropriate indices
  visualization_config = list(create_maps = TRUE)
)

corn_results <- run_comprehensive_geospatial_workflow(corn_config)

# Extract corn-specific insights
if ("stress_analysis" %in% names(corn_results$results$vegetation_analysis$analysis_results)) {
  stress_results <- corn_results$results$vegetation_analysis$analysis_results$stress_analysis
  print("Corn stress analysis:")
  print(stress_results)
}

Water Quality Assessment Workflow

Comprehensive Water Quality Pipeline

Case Study 2: Environmental Monitoring and Water Quality Assessment

Objective: Monitor environmental conditions around water bodies, assess agricultural impacts on water quality, and identify priority areas for conservation.

Step 1: Environmental Monitoring Setup

# Create environmental monitoring scenario
monitoring_extent <- c(-82.8, 39.5, -81.8, 40.5)

# Water quality monitoring stations
water_stations <- data.frame(
  station_id = paste0("WQ_", sprintf("%03d", 1:18)),
  lon = runif(18, monitoring_extent[1] + 0.1, monitoring_extent[3] - 0.1),
  lat = runif(18, monitoring_extent[2] + 0.1, monitoring_extent[4] - 0.1),
  nitrate_mg_l = runif(18, 0.5, 15.0),
  phosphorus_mg_l = runif(18, 0.02, 2.5),
  turbidity_ntu = runif(18, 1, 45),
  dissolved_oxygen_mg_l = runif(18, 4, 12),
  ph = runif(18, 6.8, 8.4),
  sampling_date = sample(seq(as.Date("2024-05-01"), as.Date("2024-09-30"), by = "day"), 18),
  watershed = sample(c("Upper_Creek", "Lower_Creek", "Tributary_A"), 18, replace = TRUE)
)

# Land use/land cover data
lulc_raster <- terra::rast(nrows = 150, ncols = 150,
                          xmin = monitoring_extent[1], xmax = monitoring_extent[3],
                          ymin = monitoring_extent[2], ymax = monitoring_extent[4])

# Simulate realistic LULC pattern
lulc_codes <- c(1, 5, 41, 42, 81, 82, 11, 21)  # Developed, Forest, Wetland, Agriculture
lulc_probs <- c(0.15, 0.25, 0.05, 0.40, 0.08, 0.05, 0.01, 0.01)
terra::values(lulc_raster) <- sample(lulc_codes, 22500, replace = TRUE, prob = lulc_probs)
names(lulc_raster) <- "LULC"

print("Environmental monitoring setup completed")

Step 2: Comprehensive Water Quality Analysis

# Comprehensive water quality assessment
water_quality_results <- list()

# Analyze each water quality parameter
parameters <- c("nitrate_mg_l", "phosphorus_mg_l", "turbidity_ntu", "dissolved_oxygen_mg_l")

for (param in parameters) {
  
  # Define parameter-specific thresholds
  thresholds <- switch(param,
    "nitrate_mg_l" = list("Low" = c(0, 3), "Moderate" = c(3, 6), 
                         "High" = c(6, 10), "Excessive" = c(10, Inf)),
    "phosphorus_mg_l" = list("Low" = c(0, 0.1), "Moderate" = c(0.1, 0.3), 
                            "High" = c(0.3, 0.8), "Excessive" = c(0.8, Inf)),
    "turbidity_ntu" = list("Clear" = c(0, 5), "Moderate" = c(5, 15), 
                          "Turbid" = c(15, 30), "Very_Turbid" = c(30, Inf)),
    "dissolved_oxygen_mg_l" = list("Critical" = c(0, 4), "Stressed" = c(4, 6), 
                                  "Good" = c(6, 8), "Excellent" = c(8, Inf))
  )
  
  # Comprehensive analysis
  water_quality_results[[param]] <- analyze_water_quality_comprehensive(
    water_data = water_stations,
    variable = param,
    region_boundary = monitoring_extent,
    thresholds = thresholds,
    output_folder = paste0("water_quality_", param)
  )
}

print("Water quality analysis completed for all parameters")

Step 3: Land Use Impact Assessment

# Assess land use impacts on water quality
land_use_impact_analysis <- function(water_stations, lulc_raster, buffer_sizes = c(500, 1000, 2000)) {
  
  results <- list()
  
  for (buffer_size in buffer_sizes) {
    
    # Extract land use composition around each station
    buffered_lulc <- spatial_join_universal(
      vector_data = water_stations,
      raster_data = lulc_raster,
      method = "buffer",
      buffer_size = buffer_size,
      summary_function = "mode",  # Most common land use
      variable_names = paste0("dominant_lulc_", buffer_size, "m")
    )
    
    # Calculate land use percentages
    for (i in 1:nrow(water_stations)) {
      station_point <- water_stations[i, ]
      station_buffer <- sf::st_buffer(sf::st_as_sf(station_point, 
                                                  coords = c("lon", "lat"), 
                                                  crs = 4326), 
                                     dist = buffer_size)
      
      # Extract all LULC values within buffer
      lulc_values <- terra::extract(lulc_raster, terra::vect(station_buffer))
      lulc_table <- table(lulc_values)
      
      # Calculate percentages
      total_pixels <- sum(lulc_table)
      agriculture_pct <- sum(lulc_table[names(lulc_table) %in% c("1", "5")]) / total_pixels * 100
      developed_pct <- sum(lulc_table[names(lulc_table) %in% c("21", "22", "23", "24")]) / total_pixels * 100
      
      water_stations[i, paste0("agriculture_pct_", buffer_size, "m")] <- agriculture_pct
      water_stations[i, paste0("developed_pct_", buffer_size, "m")] <- developed_pct
    }
    
    results[[paste0("buffer_", buffer_size, "m")]] <- water_stations
  }
  
  return(results)
}

# Perform land use impact analysis
land_use_impacts <- land_use_impact_analysis(water_stations, lulc_raster)

# Analyze correlations between land use and water quality
correlation_analysis <- function(data) {
  
  # Select relevant columns
  water_quality_vars <- c("nitrate_mg_l", "phosphorus_mg_l", "turbidity_ntu")
  land_use_vars <- grep("agriculture_pct|developed_pct", names(data), value = TRUE)
  
  correlation_matrix <- cor(data[, c(water_quality_vars, land_use_vars)], 
                           use = "complete.obs")
  
  return(correlation_matrix)
}

# Analyze correlations for different buffer sizes
correlations_500m <- correlation_analysis(land_use_impacts$buffer_500m)
correlations_1000m <- correlation_analysis(land_use_impacts$buffer_1000m)
correlations_2000m <- correlation_analysis(land_use_impacts$buffer_2000m)

print("Land use impact analysis completed")
print("Correlations at 1000m buffer:")
print(round(correlations_1000m[1:3, 4:7], 3))

Step 4: Watershed-Scale Assessment

# Watershed-scale environmental assessment
watershed_assessment <- function(water_stations, environmental_layers) {
  
  # Group stations by watershed
  watershed_summary <- list()
  
  for (watershed in unique(water_stations$watershed)) {
    
    watershed_stations <- water_stations[water_stations$watershed == watershed, ]
    
    # Calculate watershed-level statistics
    watershed_summary[[watershed]] <- list(
      n_stations = nrow(watershed_stations),
      mean_nitrate = mean(watershed_stations$nitrate_mg_l, na.rm = TRUE),
      mean_phosphorus = mean(watershed_stations$phosphorus_mg_l, na.rm = TRUE),
      mean_turbidity = mean(watershed_stations$turbidity_ntu, na.rm = TRUE),
      stations_exceeding_nitrate_threshold = sum(watershed_stations$nitrate_mg_l > 6, na.rm = TRUE),
      stations_exceeding_phosphorus_threshold = sum(watershed_stations$phosphorus_mg_l > 0.3, na.rm = TRUE)
    )
  }
  
  return(watershed_summary)
}

# Environmental layers for watershed analysis
environmental_layers <- list(
  vegetation = enhanced_ndvi,  # From previous case study
  elevation = elevation,
  lulc = lulc_raster
)

watershed_results <- watershed_assessment(water_stations, environmental_layers)

print("Watershed Assessment Results:")
for (watershed in names(watershed_results)) {
  cat("\n", watershed, ":\n")
  result <- watershed_results[[watershed]]
  cat("  Stations:", result$n_stations, "\n")
  cat("  Mean Nitrate:", round(result$mean_nitrate, 2), "mg/L\n")
  cat("  Mean Phosphorus:", round(result$mean_phosphorus, 3), "mg/L\n")
  cat("  Stations exceeding nitrate threshold:", result$stations_exceeding_nitrate_threshold, "\n")
}

Step 5: Conservation Priority Mapping

# Identify priority areas for conservation based on water quality risk
conservation_priority_analysis <- function(lulc_raster, water_quality_data, slope_data = NULL) {
  
  # Create risk factors
  risk_factors <- list()
  
  # Agricultural intensity risk
  ag_risk <- lulc_raster
  ag_risk[lulc_raster != 1 & lulc_raster != 5] <- 0  # Non-ag areas = 0 risk
  ag_risk[lulc_raster == 1 | lulc_raster == 5] <- 1  # Ag areas = 1 risk
  names(ag_risk) <- "agricultural_risk"
  
  # Water quality risk based on monitoring data
  # Create risk surface using interpolation of water quality data
  high_risk_stations <- water_quality_data[water_quality_data$nitrate_mg_l > 6 | 
                                          water_quality_data$phosphorus_mg_l > 0.3, ]
  
  if (nrow(high_risk_stations) > 0) {
    # Simple distance-based risk (closer to high-risk stations = higher risk)
    risk_raster <- terra::rast(lulc_raster)
    terra::values(risk_raster) <- 0
    
    for (i in 1:nrow(high_risk_stations)) {
      station_point <- c(high_risk_stations$lon[i], high_risk_stations$lat[i])
      # Create simple distance decay function (this is simplified)
      distances <- terra::distance(risk_raster, station_point)
      station_risk <- 1 / (1 + distances / 5000)  # 5km decay distance
      risk_raster <- risk_raster + station_risk
    }
    
    names(risk_raster) <- "water_quality_risk"
  } else {
    risk_raster <- ag_risk * 0  # No high-risk stations
  }
  
  # Combined priority score
  combined_priority <- (ag_risk * 0.6) + (risk_raster * 0.4)
  names(combined_priority) <- "conservation_priority"
  
  # Classify priority levels
  priority_values <- terra::values(combined_priority, mat = FALSE)
  priority_breaks <- quantile(priority_values[priority_values > 0], 
                             c(0, 0.25, 0.5, 0.75, 1.0), na.rm = TRUE)
  
  priority_classified <- terra::classify(combined_priority,
                                        cbind(priority_breaks[-length(priority_breaks)],
                                              priority_breaks[-1],
                                              1:4))
  names(priority_classified) <- "priority_class"
  
  return(list(
    priority_surface = combined_priority,
    priority_classified = priority_classified,
    high_risk_stations = high_risk_stations
  ))
}

# Generate conservation priorities
conservation_priorities <- conservation_priority_analysis(lulc_raster, water_stations)

print("Conservation priority analysis completed")
print(paste("High-risk stations identified:", nrow(conservation_priorities$high_risk_stations)))

Case Study 3: Temporal Change Detection and Monitoring

Objective: Analyze landscape changes over time, detect deforestation/land use conversion, and monitor ecosystem health trends.

Step 1: Multi-Temporal Data Preparation

# Simulate multi-temporal satellite data (5-year time series)
years <- 2020:2024
temporal_extent <- c(-83.0, 40.2, -82.0, 41.2)

# Create temporal NDVI series with realistic trends
temporal_ndvi_series <- list()
base_ndvi <- terra::rast(nrows = 120, ncols = 120,
                        xmin = temporal_extent[1], xmax = temporal_extent[3],
                        ymin = temporal_extent[2], ymax = temporal_extent[4])

# Create base NDVI pattern
x_coords <- terra::xFromCell(base_ndvi, 1:terra::ncell(base_ndvi))
y_coords <- terra::yFromCell(base_ndvi, 1:terra::ncell(base_ndvi))
base_pattern <- 0.6 + 0.2 * sin((x_coords - min(x_coords)) * 6) + 
                0.1 * cos((y_coords - min(y_coords)) * 4) +
                rnorm(terra::ncell(base_ndvi), 0, 0.1)
terra::values(base_ndvi) <- pmax(0.1, pmin(0.9, base_pattern))

# Simulate temporal changes
for (i in 1:length(years)) {
  year <- years[i]
  
  # Add temporal trends
  # 1. General vegetation improvement (climate change effect)
  climate_trend <- (i - 1) * 0.02
  
  # 2. Localized disturbances (development, deforestation)
  disturbance_effect <- 0
  if (i >= 3) {  # Disturbance starts in year 3
    # Simulate development in lower-left quadrant
    disturbance_mask <- (x_coords < (min(x_coords) + (max(x_coords) - min(x_coords)) * 0.4)) &
                       (y_coords < (min(y_coords) + (max(y_coords) - min(y_coords)) * 0.4))
    disturbance_effect <- ifelse(disturbance_mask, -0.3, 0)
  }
  
  # 3. Inter-annual variability
  annual_variation <- rnorm(terra::ncell(base_ndvi), 0, 0.05)
  
  # Combine effects
  year_ndvi <- base_ndvi + climate_trend + disturbance_effect + annual_variation
  year_ndvi <- pmax(0.05, pmin(0.95, year_ndvi))
  names(year_ndvi) <- paste0("NDVI_", year)
  
  temporal_ndvi_series[[as.character(year)]] <- year_ndvi
}

print("Multi-temporal data series created for years:", paste(years, collapse = ", "))

Step 2: Comprehensive Temporal Analysis

# Comprehensive temporal change analysis
temporal_analysis_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  region_boundary = temporal_extent,
  analysis_type = "trend",
  output_folder = "temporal_analysis_results"
)

# Additional change detection analysis
change_detection_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  analysis_type = "change_detection"
)

# Statistical analysis
statistics_results <- analyze_temporal_changes(
  data_list = temporal_ndvi_series,
  dates = as.character(years),
  analysis_type = "statistics"
)

print("Temporal analysis completed:")
print("Trend analysis:", !is.null(temporal_analysis_results$trend_rasters))
print("Change detection:", length(change_detection_results$change_rasters), "change maps")
print("Statistical summary:", length(statistics_results$statistics_rasters), "statistic layers")

Step 3: Change Hotspot Identification

# Identify areas of significant change
identify_change_hotspots <- function(trend_results, change_results, threshold_slope = 0.02) {
  
  # Extract slope (trend) raster
  slope_raster <- trend_results$trend_rasters$slope
  r_squared_raster <- trend_results$trend_rasters$r_squared
  
  # Identify significant trends
  significant_trends <- abs(slope_raster) > threshold_slope & r_squared_raster > 0.5
  
  # Classify change types
  change_types <- slope_raster
  change_types[slope_raster > threshold_slope & significant_trends] <- 2   # Increasing
  change_types[slope_raster < -threshold_slope & significant_trends] <- 1  # Decreasing
  change_types[!significant_trends] <- 0  # No significant change
  
  names(change_types) <- "change_type"
  
  # Calculate change statistics
  n_total <- terra::ncell(change_types)
  n_increasing <- sum(terra::values(change_types) == 2, na.rm = TRUE)
  n_decreasing <- sum(terra::values(change_types) == 1, na.rm = TRUE)
  n_stable <- sum(terra::values(change_types) == 0, na.rm = TRUE)
  
  change_stats <- list(
    total_pixels = n_total,
    increasing_pixels = n_increasing,
    decreasing_pixels = n_decreasing,
    stable_pixels = n_stable,
    increasing_percent = round(n_increasing / n_total * 100, 1),
    decreasing_percent = round(n_decreasing / n_total * 100, 1)
  )
  
  return(list(
    change_types = change_types,
    significant_trends = significant_trends,
    change_statistics = change_stats
  ))
}

# Identify hotspots
change_hotspots <- identify_change_hotspots(temporal_analysis_results, change_detection_results)

print("Change Hotspot Analysis:")
print(paste("Pixels with increasing vegetation:", change_hotspots$change_statistics$increasing_pixels))
print(paste("Pixels with decreasing vegetation:", change_hotspots$change_statistics$decreasing_pixels))
print(paste("Percentage of area with significant decline:", 
           change_hotspots$change_statistics$decreasing_percent, "%"))

Step 4: Integrated Multi-Case Study Synthesis

# Synthesize results from all case studies
comprehensive_synthesis <- function(agricultural_results, environmental_results, temporal_results) {
  
  synthesis_report <- list()
  
  # 1. Agricultural insights
  synthesis_report$agricultural_summary <- list(
    total_fields_analyzed = nrow(field_boundaries),
    management_zones_created = management_zones$optimal_zones,
    average_ndvi = round(mean(terra::values(enhanced_ndvi), na.rm = TRUE), 3),
    precision_ag_benefits = "Variable-rate applications recommended for all zones"
  )
  
  # 2. Environmental insights  
  synthesis_report$environmental_summary <- list(
    water_stations_monitored = nrow(water_stations),
    parameters_analyzed = length(parameters),
    watersheds_assessed = length(unique(water_stations$watershed)),
    high_risk_areas_identified = nrow(conservation_priorities$high_risk_stations)
  )
  
  # 3. Temporal insights
  synthesis_report$temporal_summary <- list(
    years_analyzed = length(years),
    significant_change_areas = change_hotspots$change_statistics$decreasing_percent,
    trend_analysis_completed = TRUE,
    monitoring_recommendations = "Continue monitoring areas with significant decline"
  )
  
  # 4. Integrated recommendations
  synthesis_report$integrated_recommendations <- list(
    precision_agriculture = "Implement zone-based management for optimal yields",
    water_quality = "Focus conservation efforts on high-risk watersheds",
    land_change_monitoring = "Establish permanent monitoring plots in change hotspots",
    data_integration = "Continue multi-source data integration for comprehensive assessment"
  )
  
  return(synthesis_report)
}

# Generate comprehensive synthesis
final_synthesis <- comprehensive_synthesis(
  agricultural_results, 
  water_quality_results, 
  temporal_analysis_results
)

print("COMPREHENSIVE ANALYSIS SYNTHESIS")
print("=====================================")
for (section in names(final_synthesis)) {
  cat("\n", toupper(gsub("_", " ", section)), ":\n")
  for (item in names(final_synthesis[[section]])) {
    cat("  ", gsub("_", " ", item), ":", final_synthesis[[section]][[item]], "\n")
  }
}

Advanced Workflow Tips and Best Practices

1. Workflow Optimization

# Performance optimization for large-scale analyses
optimization_tips <- function() {
  cat("WORKFLOW OPTIMIZATION GUIDE\n")
  cat("===========================\n\n")
  
  cat("Data Management:\n")
  cat("  - Process data in chunks for large datasets\n")
  cat("  - Use appropriate raster resolutions for analysis scale\n")
  cat("  - Implement data caching for repeated analyses\n")
  cat("  - Clean up intermediate files regularly\n\n")
  
  cat("Memory Management:\n")
  cat("  - Monitor memory usage with gc() and object.size()\n")
  cat("  - Use terra's out-of-memory processing for large rasters\n")
  cat("  - Remove unused objects with rm()\n")
  cat("  - Consider parallel processing for independent operations\n\n")
  
  cat("Quality Control:\n")
  cat("  - Validate inputs before processing\n")
  cat("  - Implement checkpoints in long workflows\n")
  cat("  - Log processing steps and parameters\n")
  cat("  - Create reproducible analysis scripts\n")
}

optimization_tips()

2. Reproducible Research Framework

# Framework for reproducible geospatial research
create_reproducible_workflow <- function(project_name, analysis_config) {
  
  # Create project structure
  project_dirs <- c(
    file.path(project_name, "data", "raw"),
    file.path(project_name, "data", "processed"),
    file.path(project_name, "scripts"),
    file.path(project_name, "results", "figures"),
    file.path(project_name, "results", "tables"),
    file.path(project_name, "documentation")
  )
  
  for (dir in project_dirs) {
    if (!dir.exists(dir)) dir.create(dir, recursive = TRUE)
  }
  
  # Create analysis log
  analysis_log <- list(
    project_name = project_name,
    creation_date = Sys.time(),
    geospatialsuite_version = "0.1.0",
    analysis_config = analysis_config,
    r_session_info = sessionInfo()
  )
  
  # Save analysis configuration
  saveRDS(analysis_log, file.path(project_name, "analysis_log.rds"))
  
  cat("Reproducible workflow structure created for:", project_name, "\n")
  cat("Project directories:", length(project_dirs), "created\n")
  cat("Analysis log saved\n")
  
  return(project_dirs)
}

# Example usage
workflow_config <- list(
  analysis_types = c("agricultural", "environmental", "temporal"),
  study_region = "Ohio Agricultural Region",
  temporal_extent = "2020-2024",
  spatial_resolution = "30m",
  coordinate_system = "WGS84"
)

project_structure <- create_reproducible_workflow("integrated_geospatial_analysis", workflow_config)

Summary

This comprehensive workflow vignette demonstrates:

Complete Case Studies:

  1. Precision Agriculture Analysis - Field-scale management zones and variable-rate recommendations
  2. Environmental Monitoring - Water quality assessment with land use impact analysis
  3. Temporal Change Detection - Multi-year trend analysis and change hotspot identification

Key Workflow Components:

Best Practices Demonstrated:

  1. Systematic approach to complex geospatial problems
  2. Quality control and validation at each step
  3. Reproducible workflows with documented parameters
  4. Multi-scale analysis from field to landscape levels
  5. Integrated assessment combining multiple data types

Real-World Applications:

Scalability:

The workflows in GeoSpatialSuite provide a complete toolkit for professional geospatial analysis, from data preparation through final reporting and recommendations!

Acknowledgments

This work was developed by the GeoSpatialSuite team with contributions from: Olatunde D. Akanbi, Vibha Mandayam, Yinghui Wu, Jeffrey Yarus, Erika I. Barcelos, and Roger H. French.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.