
Package ‘geotargets’
May 7, 2025

Title 'targets' Extensions for Geographic Spatial Formats

Version 0.3.0

Description
Provides extensions for various geographic spatial file formats, such as shape files and rasters. Cur-
rently provides support for the 'terra' geographic spatial formats. See the vignettes for worked ex-
amples, demonstrations, and explanations of how to use the various package extensions.

License MIT + file LICENSE

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.2

Depends R (>= 4.1.0)

Imports targets (>= 1.8.0), rlang (>= 1.1.3), cli (>= 3.6.2), terra
(>= 1.8-10), withr (>= 3.0.0), zip, lifecycle

Suggests crew (>= 0.9.2), knitr, ncmeta, rmarkdown, sf, stars,
testthat (>= 3.0.0), fs, gdalraster, spelling

Config/testthat/edition 3

URL https://github.com/ropensci/geotargets,

https://docs.ropensci.org/geotargets/

BugReports https://github.com/ropensci/geotargets/issues

VignetteBuilder knitr

NeedsCompilation no

Author Nicholas Tierney [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1460-8722>),

Eric Scott [aut] (ORCID: <https://orcid.org/0000-0002-7430-7879>),
Andrew Brown [aut] (ORCID: <https://orcid.org/0000-0002-4565-533X>)

Maintainer Nicholas Tierney <nicholas.tierney@gmail.com>

Repository CRAN

Date/Publication 2025-05-07 09:50:02 UTC

1

https://github.com/ropensci/geotargets
https://docs.ropensci.org/geotargets/
https://github.com/ropensci/geotargets/issues
https://orcid.org/0000-0003-1460-8722
https://orcid.org/0000-0002-7430-7879
https://orcid.org/0000-0002-4565-533X

2 geotargets_option_set

Contents
geotargets_option_set . 2
set_window . 4
tar_stars . 5
tar_terra_rast . 10
tar_terra_sds . 15
tar_terra_sprc . 20
tar_terra_tiles . 24
tar_terra_vect . 29
tar_terra_vrt . 34
tile_grid . 39

Index 41

geotargets_option_set Get or Set geotargets Options

Description

Get or set behaviour for geospatial data target stores using geotargets-specific global options.

Usage

geotargets_option_set(
gdal_raster_driver = NULL,
gdal_raster_creation_options = NULL,
gdal_raster_data_type = NULL,
gdal_vector_driver = NULL,
gdal_vector_creation_options = NULL,
terra_preserve_metadata = NULL

)

geotargets_option_get(name)

Arguments

gdal_raster_driver

character, length 1; set the driver used for raster data in target store (default:
"GTiff"). Options for driver names can be found here: https://gdal.org/
en/stable/drivers/raster/index.html.

gdal_raster_creation_options

character; set the GDAL creation options used when writing raster files to target
store (default: ""). You may specify multiple values e.g. c("COMPRESS=DEFLATE",
"TFW=YES"). Each GDAL driver supports a unique set of creation options. For
example, with the default "GTiff" driver: https://gdal.org/en/stable/
drivers/raster/gtiff.html#creation-options.

https://gdal.org/en/stable/drivers/raster/index.html
https://gdal.org/en/stable/drivers/raster/index.html
https://gdal.org/en/stable/drivers/raster/gtiff.html#creation-options
https://gdal.org/en/stable/drivers/raster/gtiff.html#creation-options

geotargets_option_set 3

gdal_raster_data_type

character; Data type for writing raster file. One of: "INT1U", "INT2U", "INT4U",
"INT8U", "INT2S", "INT4S", "INT8S", "FLT4S", "FLT8S" (for terra), or "Byte",
"UInt16", "UInt32", "UInt64", "Int16", "Int32", "Int64", "Float32", "Float64"
(for stars).

gdal_vector_driver

character, length 1; set the file type used for vector data in target store (default:
"GPKG").

gdal_vector_creation_options

character; set the GDAL layer creation options used when writing vector files
to target store (default: "ENCODING=UTF-8"). You may specify multiple val-
ues e.g. c("WRITE_BBOX=YES", "COORDINATE_PRECISION=10"). Each GDAL
driver supports a unique set of creation options. For example, with the de-
fault "GPKG" driver: https://gdal.org/en/stable/drivers/vector/gpkg.
html#layer-creation-options

terra_preserve_metadata

character. When "drop" (default), any auxiliary files that would be written by
terra::writeRaster() containing raster metadata such as units and datetimes
are lost (note that this does not include layer names set with names() <-).
When "zip", these metadata are retained by archiving all written files as a
zip file upon writing and unzipping them upon reading. This adds extra over-
head and will slow pipelines. Also note metadata may be impacted by different
versions of GDAL and different drivers. Note that you can specify this op-
tion for individual targets, e.g., inside tar_terra_rast() there is the option,
preserve_metadata.

name character; option name to get.

Details

These options can also be set using options(). For example, geotargets_options_set(gdal_raster_driver
= "GTiff") is equivalent to options("geotargets.gdal.raster.driver" = "GTiff").

Value

Specific options, such as "gdal.raster.driver". See "Details" for more information.

Potential issues retaining metadata

If you have an issue with retaining metadata (such as units, time, etc), this could be due to the
versions of GDAL and terra on your machine. We recommend exploring if this issue persists outside
of geotargets. That is, try saving the file out and reading it back in using regular R code. If you
find that this is an issue with geotargets, please file an issues at https://github.com/ropensci/
geotargets/issues/ and we will try and get this working for you.

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

https://gdal.org/en/stable/drivers/vector/gpkg.html#layer-creation-options
https://gdal.org/en/stable/drivers/vector/gpkg.html#layer-creation-options
https://github.com/ropensci/geotargets/issues/
https://github.com/ropensci/geotargets/issues/

4 set_window

tar_dir() runs code from a temporary directory.
targets::tar_dir({
library(geotargets)
op <- getOption("geotargets.gdal.raster.driver")
withr::defer(options("geotargets.gdal.raster.driver" = op))
geotargets_option_set(

gdal_raster_driver = "COG",
terra_preserve_metadata = "zip"

)
targets::tar_script({

list(
geotargets::tar_terra_rast(

terra_rast_example,
{

new_rast <- system.file("ex/elev.tif", package = "terra") |>
terra::rast()

terra::units(new_rast) <- "m"
new_rast

}
)

)
})
targets::tar_make()
x <- targets::tar_read(terra_rast_example)
x
terra::units(x)

})
}

geotargets_option_get("gdal.raster.driver")
geotargets_option_get("gdal.raster.creation.options")

set_window Copy a raster within a window

Description

Create a new SpatRaster object as specified by a window (area of interest) over the original Spa-
tRaster. This is a wrapper around terra::window() which, rather than modifying the SpatRaster
in place, returns a new SpatRaster leaving the original unchanged.

Usage

set_window(raster, window)

Arguments

raster a SpatRaster object.

window a SpatExtent object defining the area of interest.

tar_stars 5

Value

SpatRaster

Note

While this may have general use, it was created primarily for use within tar_terra_tiles().

Author(s)

Eric Scott

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- terra::rast(f)
e <- terra::ext(c(5.9, 6,49.95, 50))
r2 <- set_window(r, e)
terra::ext(r)
terra::ext(r2)

tar_stars Create a stars stars Target

Description

[Experimental]
Provides a target format for stars objects. Note that most or all stars objects work with ordinary
tar_target() and do not necessarily need geotargets target factories the way terra objects do.
Currently tar_stars() has the same limitations as stars::write_stars(), so use with caution.

Usage

tar_stars(
name,
command,
pattern = NULL,
proxy = FALSE,
mdim = FALSE,
ncdf = FALSE,
driver = geotargets_option_get("gdal.raster.driver"),
options = geotargets_option_get("gdal.raster.creation.options"),
type = geotargets_option_get("gdal.raster.data.type"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

6 tar_stars

repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

tar_stars_proxy(
name,
command,
pattern = NULL,
mdim = FALSE,
ncdf = FALSE,
driver = geotargets_option_get("gdal.raster.driver"),
options = geotargets_option_get("gdal.raster.creation.options"),
type = geotargets_option_get("gdal.raster.data.type"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

command R code to run the target.

pattern Code to define a dynamic branching pattern for a target. See targets::tar_target()
for more information.

tar_stars 7

proxy logical. Passed to stars::read_stars(). If TRUE the target will be read as an
object of class stars_proxy. Otherwise, the object is class stars.

mdim logical. Use the Multidimensional Raster Data Model via stars::write_mdim()?
Default: FALSE. Only supported for some drivers, e.g. "netCDF" or "Zarr".

ncdf logical. Use the NetCDF library directly to read data via stars::read_ncdf()?
Default: FALSE. Only supported for driver="netCDF".

driver character. File format expressed as GDAL driver names passed to stars::write_stars().
See sf::st_drivers().

options character. GDAL driver specific datasource creation options passed to stars::write_stars().

type character. character. Data type passed to stars::write_stars(). One of:
"Byte", "UInt16", "UInt32", "UInt64", "Int16", "Int32", "Int64", "Float32",
"Float64".

... Additional arguments not yet used.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

https://gdal.org/en/stable/user/multidim_raster_data_model.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

8 tar_stars

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:
• "auto" (default): equivalent to memory = "transient" in almost all cases.

But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458

tar_stars 9

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

10 tar_terra_rast

See Also

targets::tar_target()

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
library(geotargets)
targets::tar_script({

list(
geotargets::tar_stars(

stars_example,
stars::read_stars(
system.file("tif", "olinda_dem_utm25s.tif", package = "stars")
),
type = "Int64"

)
)

})
targets::tar_make()
x <- targets::tar_read(stars_example)

})
}

tar_terra_rast Create a terra SpatRaster target

Description

Provides a target format for terra::SpatRaster objects.

Usage

tar_terra_rast(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
datatype = geotargets_option_get("gdal.raster.data.type"),
preserve_metadata = geotargets_option_get("terra.preserve.metadata"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

tar_terra_rast 11

repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

command R code to run the target.

pattern Code to define a dynamic branching pattern for a target. See targets::tar_target()
for more information.

filetype character. File format expressed as GDAL driver names passed to terra::writeRaster()

gdal character. GDAL driver specific datasource creation options passed to terra::writeRaster()

datatype character. Data type passed to terra::writeRaster(). One of: "INT1U",
"INT2U", "INT4U", "INT8U", "INT2S", "INT4S", "INT8S", "FLT4S", "FLT8S"

preserve_metadata

character. When "drop" (default), any auxiliary files that would be written by
terra::writeRaster() containing raster metadata such as units and datetimes
are lost (note that this does not include layer names set with names() <-).
When "zip", these metadata are retained by archiving all written files as a zip
file upon writing and unzipping them upon reading. This adds extra overhead
and will slow pipelines. Also note metadata may be impacted by different ver-
sions of GDAL and different drivers. If you have an issue with retaining meta-
data for your setup, please file an issue at https://github.com/ropensci/
geotargets/issues/ and we will try and get this working for you. Also note
that you can specify this option inside geotargets_option_set() if you want
to set this for the entire pipeline.

... Additional arguments passed to terra::writeRaster()

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

https://github.com/ropensci/geotargets/issues/
https://github.com/ropensci/geotargets/issues/

12 tar_terra_rast

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_terra_rast 13

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval

https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

14 tar_terra_rast

= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Details

The terra package uses objects like terra::SpatRaster, terra::SpatVector, and terra::SpatRasterDataset
(SDS), which do not contain the data directly–they contain a C++ pointer to memory where the data
is stored. As a result, these objects are not portable between R sessions without special handling,
which causes problems when including them in targets pipelines with targets::tar_target().
The functions, tar_terra_rast(), tar_terra_sds(), tar_terra_sprc(), tar_terra_tiles(),
and tar_terra_vect() handle this issue by writing and reading the target as a geospatial file (spec-
ified by filetype) rather than saving the relevant object (e.g., SpatRaster, SpatVector, etc.),
itself.

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

See Also

targets::tar_target()

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
library(geotargets)
targets::tar_script({

tar_terra_sds 15

list(
geotargets::tar_terra_rast(

terra_rast_example,
system.file("ex/elev.tif", package = "terra") |> terra::rast()

)
)

})
targets::tar_make()
x <- targets::tar_read(terra_rast_example)

})
}

tar_terra_sds Create a terra SpatRasterDataset target

Description

Provides a target format for terra::SpatRasterDataset objects, which hold sub-datasets, each a SpatRaster
that can have multiple layers.

Usage

tar_terra_sds(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

16 tar_terra_sds

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

command R code to run the target.

pattern Code to define a dynamic branching pattern for a target. See targets::tar_target()
for more information.

filetype character. File format expressed as GDAL driver names passed to terra::writeRaster().

gdal character. GDAL driver specific datasource creation options. passed to terra::writeRaster()

... Additional arguments not yet used.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_terra_sds 17

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458

18 tar_terra_sds

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Details

The terra package uses objects like terra::SpatRaster, terra::SpatVector, and terra::SpatRasterDataset
(SDS), which do not contain the data directly–they contain a C++ pointer to memory where the data
is stored. As a result, these objects are not portable between R sessions without special handling,
which causes problems when including them in targets pipelines with targets::tar_target().
The functions, tar_terra_rast(), tar_terra_sds(), tar_terra_sprc(), tar_terra_tiles(),

https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

tar_terra_sds 19

and tar_terra_vect() handle this issue by writing and reading the target as a geospatial file (spec-
ified by filetype) rather than saving the relevant object (e.g., SpatRaster, SpatVector, etc.),
itself.

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

Author(s)

Andrew Gene Brown

Nicholas Tierney

Eric R. Scott

See Also

targets::tar_target_raw(), tar_terra_sprc()

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(geotargets)
elev_scale <- function(z = 1) {

terra::rast(system.file("ex", "elev.tif", package = "terra")) * z
}
list(

tar_terra_sds(
raster_elevs,
two rasters, one unaltered, one scaled by factor of 2
command = terra::sds(list(

elev_scale(1),
elev_scale(2)

))
)

)
})
targets::tar_make()
targets::tar_read(raster_elevs)

})
}

20 tar_terra_sprc

tar_terra_sprc Create a terra SpatRasterCollection target

Description

Provides a target format for terra::SpatRasterCollection objects, which have no restriction in the
extent or other geometric parameters.

Usage

tar_terra_sprc(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

command R code to run the target.

pattern Code to define a dynamic branching pattern for a target. See targets::tar_target()
for more information.

filetype character. File format expressed as GDAL driver names passed to terra::writeRaster().

gdal character. GDAL driver specific datasource creation options. passed to terra::writeRaster()

... Additional arguments not yet used.

tar_terra_sprc 21

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

22 tar_terra_sprc

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

tar_terra_sprc 23

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Details

The terra package uses objects like terra::SpatRaster, terra::SpatVector, and terra::SpatRasterDataset
(SDS), which do not contain the data directly–they contain a C++ pointer to memory where the data
is stored. As a result, these objects are not portable between R sessions without special handling,
which causes problems when including them in targets pipelines with targets::tar_target().
The functions, tar_terra_rast(), tar_terra_sds(), tar_terra_sprc(), tar_terra_tiles(),
and tar_terra_vect() handle this issue by writing and reading the target as a geospatial file (spec-
ified by filetype) rather than saving the relevant object (e.g., SpatRaster, SpatVector, etc.),
itself.

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

https://books.ropensci.org/targets/crew.html

24 tar_terra_tiles

Author(s)

Andrew Gene Brown

Nicholas Tierney

See Also

targets::tar_target_raw()

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(geotargets)
elev_scale <- function(z = 1, projection = "EPSG:4326") {

terra::project(
terra::rast(system.file("ex", "elev.tif", package = "terra")) * z,
projection

)
}
list(

tar_terra_sprc(
raster_elevs,
two rasters, one unaltered, one scaled by factor of 2 and
reprojected to interrupted good homolosine
command = terra::sprc(list(

elev_scale(1),
elev_scale(2, "+proj=igh")

))
)

)
})
targets::tar_make()
targets::tar_read(raster_elevs)

})
}

tar_terra_tiles Split a raster into tiles that can be iterated over with dynamic branch-
ing

Description

Creates two targets, a list of extents defining tiles and a downstream pattern that maps over these
extents to create a list of SpatRaster objects that can be used with dynamic branching.

https://books.ropensci.org/targets/dynamic.html

tar_terra_tiles 25

Usage

tar_terra_tiles(
name,
raster,
tile_fun,
filetype = geotargets_option_get("gdal.raster.driver"),
gdal = geotargets_option_get("gdal.raster.creation.options"),
...,
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

raster a SpatRaster object to be split into tiles.

tile_fun a helper function that returns a list of numeric vectors such as tile_grid(),
tile_n() or tile_blocksize specified in one of the following ways:

• A named function, e.g. tile_blocksize or "tile_blocksize".
• An anonymous function, e.g. \(x) tile_grid(x, nrow = 2, ncol = 2).

filetype character. File format expressed as GDAL driver names passed to terra::makeTiles().

gdal character. GDAL driver specific datasource creation options passed to terra::makeTiles().

... additional arguments not yet used.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),

26 tar_terra_tiles

but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_terra_tiles 27

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.

https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

28 tar_terra_tiles

• "main": the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Details

When a raster is too large or too high resolution to work on in-memory, one possible solution is
to iterate over tiles. Raster tiles can then be operated on one at a time, or possibly in parallel
if resources are available, and then the results can be aggregated. A natural way to do this in
the context of a targets pipeline is to split the raster into multiple raster targets with dynamic
branching so that downstream targets can be applied to each branch of the upstream target with
the pattern argument to tar_terra_rast() or tar_target(). tar_terra_tiles() facilitates
creation of such a dynamically branched target. This workflow isn’t appropriate for operations that
aggregate spatially, only pixel-wise operations (possibly aggregating across multiple layers).

This target factory is useful when a raster is too large or too high resolution to work on in-memory.
It can instead be split into tiles that can be iterated over using dynamic branching.

Value

a list of two targets: an upstream target that creates a list of extents and a downstream pattern that
maps over these extents to create a list of SpatRaster objects.

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

When using the tile_blocksize() helper function, you may need to set memory = "transient"
on the upstream target provided to the raster argument of tar_terra_tiles(). More details are
in the help file for tile_blocksize().

Author(s)

Eric Scott

See Also

tile_n(), tile_grid(), tile_blocksize(), tar_terra_rast(), tar_terra_vrt()

tar_terra_vect 29

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({
targets::tar_script({

library(targets)
library(geotargets)
library(terra)
list(

tar_target(
my_file,
system.file("ex/elev.tif", package="terra"),
format = "file"

),
tar_terra_rast(

my_map,
terra::rast(my_file)

),
tar_terra_tiles(

name = rast_split,
raster = my_map,
tile_fun = \(x) tile_grid(x, ncol = 2, nrow = 2)

)
)

})
targets::tar_manifest()

})
}

tar_terra_vect Create a terra SpatVector target

Description

Provides a target format for terra::SpatVector objects.

Usage

tar_terra_vect(
name,
command,
pattern = NULL,
filetype = geotargets_option_get("gdal.vector.driver"),
gdal = geotargets_option_get("gdal.vector.creation.options"),
...,
packages = targets::tar_option_get("packages"),
tidy_eval = targets::tar_option_get("tidy_eval"),
library = targets::tar_option_get("library"),

30 tar_terra_vect

repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. A target name must be a valid name for a symbol
in R, and it must not start with a dot. See targets::tar_target() for more
information.

command R code to run the target.

pattern Code to define a dynamic branching pattern for a target. See targets::tar_target()
for more information.

filetype character. File format expressed as GDAL driver names passed to terra::writeVector().
See ’Note’ for more details.

gdal character. GDAL driver specific datasource creation options passed to terra::writeVector().

... Additional arguments passed to terra::writeVector()

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

library Character vector of library paths to try when loading packages.

repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_terra_vect 31

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

32 tar_terra_vect

collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

tar_terra_vect 33

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

Details

The terra package uses objects like terra::SpatRaster, terra::SpatVector, and terra::SpatRasterDataset
(SDS), which do not contain the data directly–they contain a C++ pointer to memory where the data
is stored. As a result, these objects are not portable between R sessions without special handling,
which causes problems when including them in targets pipelines with targets::tar_target().
The functions, tar_terra_rast(), tar_terra_sds(), tar_terra_sprc(), tar_terra_tiles(),
and tar_terra_vect() handle this issue by writing and reading the target as a geospatial file (spec-
ified by filetype) rather than saving the relevant object (e.g., SpatRaster, SpatVector, etc.),
itself.

Value

target class "tar_stem" for use in a target pipeline

Note

The iteration argument is unavailable because it is hard-coded to "list", the only option that
works currently.

Although you may pass any supported GDAL vector driver to the filetype argument, not all
formats are guaranteed to work with geotargets. At the moment, we have tested GPKG, GeoJSON
and ESRI Shapefile which all appear to work generally.

Examples

For CRAN. Ensures these examples run under certain conditions.
To run this locally, run the code inside this if statement
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

lux_area <- function(projection = "EPSG:4326") {
terra::project(

terra::vect(system.file("ex", "lux.shp",
package = "terra"

)),
projection

)
}
list(

geotargets::tar_terra_vect(
terra_vect_example,
lux_area()

)
)

34 tar_terra_vrt

})
targets::tar_make()
x <- targets::tar_read(terra_vect_example)

})
}

tar_terra_vrt Create a GDAL Virtual Dataset (VRT) with terra

Description

Provides a target format for terra::SpatRaster, terra::SpatRasterDataset, and terra::SpatRasterCollection
objects representing a GDAL Virtual Dataset (VRT).

Usage

tar_terra_vrt(
name,
command,
pattern = NULL,
...,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
repository = targets::tar_option_get("repository"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")

)

Arguments

name Symbol, name of the target. In tar_target(), name is an unevaluated symbol,
e.g. tar_target(name = data). In tar_target_raw(), name is a character
string, e.g. tar_target_raw(name = "data").
A target name must be a valid name for a symbol in R, and it must not start with
a dot. Subsequent targets can refer to this name symbolically to induce a depen-
dency relationship: e.g. tar_target(downstream_target, f(upstream_target))
is a target named downstream_target which depends on a target upstream_target
and a function f().

https://gdal.org/en/stable/drivers/raster/vrt.html

tar_terra_vrt 35

In most cases, The target name is the name of its local data file in storage. Some
file systems are not case sensitive, which means converting a name to a different
case may overwrite a different target. Please ensure all target names have unique
names when converted to lower case.
In addition, a target’s name determines its random number generator seed. In
this way, each target runs with a reproducible seed so someone else running
the same pipeline should get the same results, and no two targets in the same
pipeline share the same seed. (Even dynamic branches have different names
and thus different seeds.) You can recover the seed of a completed target with
tar_meta(your_target, seed) and run tar_seed_set() on the result to lo-
cally recreate the target’s initial RNG state.

command R code to run the target. In tar_target(), command is an unevaluated expres-
sion, e.g. tar_target(command = data). In tar_target_raw(), command is
an evaluated expression, e.g. tar_target_raw(command = quote(data)).

pattern Code to define a dynamic branching branching for a target. In tar_target(),
pattern is an unevaluated expression, e.g. tar_target(pattern = map(data)).
In tar_target_raw(), command is an evaluated expression, e.g. tar_target_raw(pattern
= quote(map(data))).
To demonstrate dynamic branching patterns, suppose we have a pipeline with
numeric vector targets x and y. Then, tar_target(z, x + y, pattern = map(x,
y)) implicitly defines branches of z that each compute x[1] + y[1], x[2] +
y[2], and so on. See the user manual for details.

... Additional arguments passed to terra::vrt()

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator !! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.
repository Character of length 1, remote repository for target storage. Choices:

• "local": file system of the local machine.
• "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a

non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

• "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

• A character string from tar_repository_cas() for content-addressable
storage.

Note: if repository is not "local" and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

36 tar_terra_vrt

error Character of length 1, what to do if the target stops and throws an error. Options:

• "stop": the whole pipeline stops and throws an error.
• "continue": the whole pipeline keeps going.
• "null": The errored target continues and returns NULL. The data hash is

deliberately wrong so the target is not up to date for the next run of the
pipeline. In addition, as of targets version 1.8.0.9011, a value of NULL is
given to upstream dependencies with error = "null" if loading fails.

• "abridge": any currently running targets keep running, but no new targets
launch after that.

• "trim": all currently running targets stay running. A queued target is al-
lowed to start if:
1. It is not downstream of the error, and
2. It is not a sibling branch from the same tar_target() call (if the error

happened in a dynamic branch).
The idea is to avoid starting any new work that the immediate error impacts.
error = "trim" is just like error = "abridge", but it allows potentially
healthy regions of the dependency graph to begin running. (Visit https://
books.ropensci.org/targets/debugging.html to learn how to debug
targets using saved workspaces.)

memory Character of length 1, memory strategy. Possible values:

• "auto" (default): equivalent to memory = "transient" in almost all cases.
But to avoid superfluous reads from disk, memory = "auto" is equivalent
to memory = "persistent" for for non-dynamically-branched targets that
other targets dynamically branch over. For example: if your pipeline has
tar_target(name = y, command = x, pattern = map(x)), then tar_target(name
= x, command = f(), memory = "auto") will use persistent memory in or-
der to avoid rereading all of x for every branch of y.

• "transient": the target gets unloaded after every new target completes.
Either way, the target gets automatically loaded into memory whenever an-
other target needs the value.

• "persistent": the target stays in memory until the end of the pipeline
(unless storage is "worker", in which case targets unloads the value
from memory right after storing it in order to avoid sending copious data
over a network).

For cloud-based file targets (e.g. format = "file" with repository = "aws"),
the memory option applies to the temporary local copy of the file: "persistent"
means it remains until the end of the pipeline and is then deleted, and "transient"
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

Logical: TRUE to run base::gc() just before the target runs, in whatever R pro-
cess it is about to run (which could be a parallel worker). FALSE to omit garbage
collection. Numeric values get converted to FALSE. The garbage_collection
option in tar_option_set() is independent of the argument of the same name
in tar_target().

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_terra_vrt 37

deployment Character of length 1. If deployment is "main", then the target will run on the
central controlling R process. Otherwise, if deployment is "worker" and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Deprecated on 2025-04-08 (targets version 1.10.1.9013). targets has moved
to a more efficient scheduling algorithm (https://github.com/ropensci/targets/
issues/1458) which cannot support priorities. The priority argument of
tar_target() no longer has a reliable effect on execution order.

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character string to control when the output of the target is saved to storage.
Only relevant when using targets with parallel workers (https://books.
ropensci.org/targets/crew.html). Must be one of the following values:

• "worker" (default): the worker saves/uploads the value.
• "main": the target’s return value is sent back to the host machine and

saved/uploaded locally.
• "none": targets makes no attempt to save the result of the target to storage

in the location where targets expects it to be. Saving to storage is the
responsibility of the user. Use with caution.

retrieval Character string to control when the current target loads its dependencies into
memory before running. (Here, a "dependency" is another target upstream that
the current one depends on.) Only relevant when using targets with parallel
workers (https://books.ropensci.org/targets/crew.html). Must be one
of the following values:

• "auto" (default): equivalent to retrieval = "worker" in almost all cases.
But to avoid unnecessary reads from disk, retrieval = "auto" is equiv-
alent to retrieval = "main" for dynamic branches that branch over non-
dynamic targets. For example: if your pipeline has tar_target(x, command
= f()), then tar_target(y, command = x, pattern = map(x), retrieval
= "auto") will use "main" retrieval in order to avoid rereading all of x for
every branch of y.

• "worker": the worker loads the target’s dependencies.
• "main": the target’s dependencies are loaded on the host machine and sent

to the worker before the target runs.
• "none": targets makes no attempt to load its dependencies. With retrieval
= "none", loading dependencies is the responsibility of the user. Use with
caution.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make(). For example, tar_manifest(names =
tar_described_as(starts_with("survival model"))) lists all the targets
whose descriptions start with the character string "survival model".

https://books.ropensci.org/targets/crew.html
https://github.com/ropensci/targets/issues/1458
https://github.com/ropensci/targets/issues/1458
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html
https://books.ropensci.org/targets/crew.html

38 tar_terra_vrt

Details

tar_terra_vrt() accepts SpatRaster, SpatRasterDataset, or SpatRasterCollection objects as input,
and returns a SpatRaster referencing a GDAL Virtual Dataset file (.vrt). The .vrt file format uses
XML and describes the layers and tiles that comprise a virtual raster data source. To use a list of
SpatRaster of varying extent, such as output from tar_terra_tiles(), or a character vector of
paths, wrap the tile result in a call to terra::sprc() to create a SpatRasterCollection.

Value

target class "tar_stem" for use in a target pipeline

See Also

tar_terra_tiles()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

list(
geotargets::tar_terra_vrt(

terra_rast_example,
terra::rast(system.file("ex/elev.tif", package = "terra"))

)
)

})
targets::tar_make()
x <- targets::tar_read(terra_rast_example)

})

targets::tar_dir({
targets::tar_script({

library(targets)
library(geotargets)
list(

tar_terra_rast(r, terra::rast(
system.file("ex", "elev.tif", package = "terra")

)),
tar_terra_rast(r2, r * 2),
tar_terra_tiles(rt, c(r, r2), function(x)

tile_grid(x, ncol = 2, nrow = 2)),
tar_terra_vrt(r3, terra::sprc(rt))

)
})

})

}

tile_grid 39

tile_grid Helper functions to create tiles

Description

Wrappers around terra::getTileExtents() that return a list of named numeric vectors describ-
ing the extents of tiles rather than SpatExtent objects. While these may have general use, they are
intended primarily for supplying to the tile_fun argument of tar_terra_tiles().

Usage

tile_grid(raster, ncol, nrow)

tile_blocksize(raster, n_blocks_row = 1, n_blocks_col = 1)

tile_n(raster, n)

Arguments

raster a SpatRaster object.

ncol integer; number of columns to split the SpatRaster into.

nrow integer; number of rows to split the SpatRaster into.

n_blocks_row integer; multiple of blocksize to include in each tile vertically.

n_blocks_col integer; multiple of blocksize to include in each tile horizontally.

n integer; total number of tiles to split the SpatRaster into.

Details

tile_blocksize() creates extents using the raster’s native block size (see terra::fileBlocksize()),
which should be more memory efficient. Create tiles with multiples of the raster’s blocksize with
n_blocks_row and n_blocks_col. We strongly suggest the user explore how many tiles are cre-
ated by tile_blocksize() before creating a dynamically branched target using this helper. Note
that block size is a property of files and does not apply to in-memory SpatRasters. Therefore, if
you want to use this helper in tar_terra_tiles() you may need to ensure the upstream target
provided to the raster argument is not in memory by setting memory = "transient".

tile_grid() allows specification of a number of rows and columns to split the raster into. E.g.
nrow = 2 and ncol = 2 would create 4 tiles (because it specifies a 2x2 matrix, which has 4 elements).

tile_n() creates (about) n tiles and prints the number of rows, columns, and total tiles created.

Value

list of named numeric vectors with xmin, xmax, ymin, and ymax values that can be coerced to
SpatExtent objects with terra::ext().

40 tile_grid

Author(s)

Eric Scott

Examples

f <- system.file("ex/elev.tif", package="terra")
r <- terra::rast(f)
tile_grid(r, ncol = 2, nrow = 2)
tile_blocksize(r)
tile_n(r, 8)

#Example usage with tar_terra_tiles
list(

tar_terra_rast(
my_map,
terra::rast(system.file("ex/logo.tif", package = "terra"))

),
tar_terra_tiles(

name = rast_split,
raster = my_map,
tile_fun = tile_blocksize,
description = "Each tile is 1 block"

),
tar_terra_tiles(

name = rast_split_2blocks,
raster = my_map,
tile_fun = \(x) tile_blocksize(

x,
n_blocks_row = 2,
n_blocks_col = 1
),

description = "Each tile is 2 blocks tall, 1 block wide"
),
tar_terra_tiles(

name = rast_split_grid,
raster = my_map,
tile_fun = \(x) tile_grid(x, ncol = 2, nrow = 2),
description = "Split into 4 tiles in a 2x2 grid"

),
tar_terra_tiles(

name = rast_split_n,
raster = my_map,
tile_fun = \(x) tile_n(x, n = 6),
description = "Split into 6 tiles"

)
)

Index

geotargets_option_get
(geotargets_option_set), 2

geotargets_option_set, 2
geotargets_option_set(), 11

set_window, 4
sf::st_drivers(), 7
stars::read_ncdf(), 7
stars::read_stars(), 7
stars::write_mdim(), 7
stars::write_stars(), 5, 7

tar_make(), 9, 14, 18, 23, 28, 33, 37
tar_manifest(), 9, 14, 18, 23, 28, 33, 37
tar_option_set(), 8, 13, 17, 22, 27, 32, 36
tar_repository_cas(), 7, 12, 16, 21, 26, 30,

35
tar_resources_aws(), 7, 12, 16, 21, 25, 30,

35
tar_seed_set(), 35
tar_stars, 5
tar_stars_proxy (tar_stars), 5
tar_target(), 8, 12, 13, 17, 21, 22, 26, 27,

31, 32, 34–37
tar_target_raw(), 34, 35
tar_terra_rast, 10
tar_terra_rast(), 3, 14, 18, 23, 28, 33
tar_terra_sds, 15
tar_terra_sds(), 14, 18, 23, 33
tar_terra_sprc, 20
tar_terra_sprc(), 14, 18, 19, 23, 33
tar_terra_tiles, 24
tar_terra_tiles(), 5, 14, 18, 23, 33, 38, 39
tar_terra_vect, 29
tar_terra_vect(), 14, 19, 23, 33
tar_terra_vrt, 34
tar_terra_vrt(), 28
tar_visnetwork(), 9, 14, 18, 23, 28, 33, 37
targets::tar_target(), 6, 10, 11, 14, 16,

18, 20, 23, 25, 30, 33

targets::tar_target_raw(), 19, 24
terra::ext(), 39
terra::fileBlocksize(), 39
terra::getTileExtents(), 39
terra::makeTiles(), 25
terra::SpatRaster, 10, 14, 18, 23, 33, 34
terra::SpatRasterCollection, 20, 34
terra::SpatRasterDataset, 14, 15, 18, 23,

33, 34
terra::SpatVector, 14, 18, 23, 29, 33
terra::vrt(), 35
terra::window(), 4
terra::writeRaster(), 3, 11, 16, 20
terra::writeVector(), 30
tile_blocksize, 25
tile_blocksize (tile_grid), 39
tile_blocksize(), 28
tile_grid, 39
tile_grid(), 25, 28
tile_n (tile_grid), 39
tile_n(), 25, 28

41

	geotargets_option_set
	set_window
	tar_stars
	tar_terra_rast
	tar_terra_sds
	tar_terra_sprc
	tar_terra_tiles
	tar_terra_vect
	tar_terra_vrt
	tile_grid
	Index

