The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Get And Manipulate the GESLA Dataset
Action | R-CMD-check |
test-coverage |
pkgdown |
codecov |
---|---|---|---|---|
Status |
The geslaR package was developed to deal with the GESLA (Global Extreme Sea Level Analysis) dataset.
The GESLA (Global Extreme Sea Level Analysis) project aims to provide a global database of higher-frequency sea-level records for researchers to study tides, storm surges, extreme sea levels, and related processes. Three versions of the GESLA dataset are available for download, including a zip file containing the entire dataset, a CSV file containing metadata, and a KML file for plotting the location of all station records in Google Earth. The geslaR R package developed here aims to facilitate the access to the GESLA dataset by providing functions to download it entirely, or query subsets of it directly into R, without the need of downloading the full dataset. Also, it provides a built-in web-application, so that users can apply basic filters to select the data of interest, generating informative plots, and showing the selected sites all over the world. Users can download the selected subset of data in CSV or Parquet file formats, with the latter being recommended due to its smaller size and the ability to handle it in many programming languages through the Apache Arrow language for in-memory analytics. The web interface was developed using the Shiny R package, with the CSV files from the GESLA dataset converted to the Parquet format and stored in an Amazon AWS bucket.
To get started with the package, please see the vignette Dealing with the GESLA dataset in R, where you will find a besic introduction to all the functions available and how to use each one of them. To learn how to use the Apache Arrow framework to deal with the dataset in R, see the vignette Introduction to Apache Arrow framework.
You can install the latest version of geslaR from GitHub with:
## install.packages("devtools")
::install_github("EireExtremes/geslaR") devtools
To be able to use the built-in web-application, all the package dependencies should also be installed with:
::install_github("EireExtremes/geslaR", dependencies = TRUE) devtools
library(geslaR)
To read files from the GESLA dataset, use the
read_gesla()
function.
##------------------------------------------------------------------
## Import an internal example Parquet file
<- tempdir()
tmp file.copy(system.file(
"extdata", "ireland.parquet", package = "geslaR"), tmp)
<- read_gesla(paste0(tmp, "/ireland.parquet"))
da ## Check size in memory
object.size(da)
##------------------------------------------------------------------
## Import an internal example CSV file
<- tempdir()
tmp file.copy(system.file(
"extdata", "ireland.csv", package = "geslaR"), tmp)
<- read_gesla(paste0(tmp, "/ireland.csv"))
da ## Check size in memory
object.size(da)
##------------------------------------------------------------------
## Import an internal example Parquet file as data.frame
<- tempdir()
tmp file.copy(system.file(
"extdata", "ireland.parquet", package = "geslaR"), tmp)
<- read_gesla(paste0(tmp, "/ireland.parquet"),
da as_data_frame = TRUE)
## Check size in memory
object.size(da)
##------------------------------------------------------------------
## Import an internal example CSV file as data.frame
<- tempdir()
tmp file.copy(system.file(
"extdata", "ireland.csv", package = "geslaR"), tmp)
<- read_gesla(paste0(tmp, "/ireland.csv"),
da as_data_frame = TRUE)
## Check size in memory
object.size(da)
To make a query to the GESLA dataset and load it directly into R, one
can use the query_gesla()
function.
## Query a subset of the GESLA dataset, without the need of downloading
## all the dataset
<- query_gesla(country = "IRL", year = 2020:2021, as_data_frame = FALSE)
de class(de)
To download the full dataset locally, use the
download_gesla()
function.
## Download the whole dataset (parquet files) into a specific location
download_gesla(dest = "./gesla_dataset")
## ℹ The total size of the dataset is about 7GB, and the download time will depend on
## your internet connection
## Do you want to download the whole dataset?
## 1: Yes
## 2: No
## Selection: 1
## ℹ Wait while the dataset is downloaded...
To open the built-in web-application, use the
run_gesla_app()
function (note that this will need the
installation of geslaR with all of its
dependencies).
## This function will download the whole dataset (if not yet done), and
## open the geslar-app web interface locally on your browser
run_gesla_app()
This work has emanated from research conducted with the financial support of Science Foundation Ireland and co-funded by GSI under Grant number 20/FFP-P/8610.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.