The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Categorical images in ggbrain

Many visualizations of brain data rely on continuous-valued images containing intensities or statistics. For example, we might wish to visualize the z-statistics of a general linear model.

Yet, there are often images that contain integers, where unique values represent a priori regions of interest or clusters identified using familywise error correction methods. Brain atlases are a common example of integer-valued images. Here we demonsrate the cortical parcellation developed by Schaefer and colleagues (2018).

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 28, 3095-3114.

As you can see, this version of the atlas contains 200 cortical parcels.

schaefer_img <- readNifti(schaefer200_atlas_3mm)
sort(unique(as.vector(schaefer_img)))
##   [1]   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
##  [19]  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35
##  [37]  36  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53
##  [55]  54  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71
##  [73]  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89
##  [91]  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107
## [109] 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
## [127] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
## [145] 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
## [163] 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
## [181] 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
## [199] 198 199 200

At a basic level, we can visualize this image in the same way as continuous images, as described in [ggbrain_introduction.html].

gg_obj <- ggbrain() +
  images(c(underlay = underlay_3mm, atlas = schaefer200_atlas_3mm)) +
  slices(c("z = 30", "z=40")) +
  geom_brain(definition = "underlay") +
  geom_brain(definition = "atlas")

plot(gg_obj)

As we can see, however, the continuous values represent discrete parcels in the atlas. Thus, we may wish to use a categorical/discrete color scale to visualize things.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.