The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Arguably one of the most popular features of GraphPad Prism is adding p-values to plots. Indeed in Prism 9, GraphPad have added a feature to automatically perform pairwise comparisons and add the resulting p-values with brackets to the graph.
ggprism
includes the add_pvalue()
function
to add p-values with or without brackets to ggplots. This vignette will
go through the many ways in which this function can be used.
This function is a re-written version of
stat_pvalue_manual()
from the ggpubr
package, which itself is based on the geom_signif()
function from the ggsignif
package. Compared to stat_pvalue_manual()
, the
add_pvalue()
function is: easier to use, more robust with
less dependencies, and has more customisable brackets.
To add significance brackets to a plot, you need a minimal data.frame with 4 columns and a number of rows corresponding to the number of brackets you want to add. The 4 columns should correspond to these 4 function arguments:
"group1"
)"group2"
)"label"
)"y.position"
)For grouped or faceted data you’ll also need a column which is named according to the grouping variable. See the Many more examples section for help with this/examples.
Let’s see how this works in practice. First we’ll plot the
sleep
data set.
str(sleep)
#> 'data.frame': 20 obs. of 3 variables:
#> $ extra: num 0.7 -1.6 -0.2 -1.2 -0.1 3.4 3.7 0.8 0 2 ...
#> $ group: Factor w/ 2 levels "1","2": 1 1 1 1 1 1 1 1 1 1 ...
#> $ ID : Factor w/ 10 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
# create a jitter plot of the sleep data set
# and indicate the means
p <- ggplot(sleep, aes(x = group, y = extra)) +
geom_jitter(aes(shape = group), width = 0.1) +
stat_summary(geom = "crossbar", fun = mean, colour = "red", width = 0.2) +
theme_prism() +
theme(legend.position = "none")
p
Next we’ll perform a t-test and obtain a p-value for the difference between the two means.
# perform a t-test and obtain the p-value
result <- t.test(extra ~ group, data = sleep)$p.value
result <- signif(result, digits = 3)
result
#> [1] 0.0794
Now we’ll construct a p-value data.frame for
add_pvalue()
to use.
And finally we’ll add this p-value to our plot. Because we have used
the default column names (see above) in our p-value table we don’t
necessarily have to specify any arguments of add_pvalue()
.
However, here we’ll do it for clarity’s sake. Additionally, if your
p-value table has special column names, you will need to specify them in
add_pvalue()
.
# add p-value brackets
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
xmax = "group2",
label = "label",
y.position = "y.position")
# change column names to something silly
colnames(df_p_val) <- c("apple", "banana", "some_label", "some_y_position")
# add p-value brackets again
p2 <- p + add_pvalue(df_p_val,
xmin = "apple",
xmax = "banana",
label = "some_label",
y.position = "some_y_position")
p1 + p2
# return column names back to default
colnames(df_p_val) <- c("group1", "group2", "label", "y.position")
You can easily change how the bracket and label looks. You can make
the label a glue
expression. You can also change the tip
length of the bracket. Lastly, you can flip the label when using
coord_flip()
.
# change bracket and label aesthetics
p1 <- p + add_pvalue(df_p_val,
colour = "red", # label
label.size = 8, # label
fontface = "bold", # label
fontfamily = "serif", # label
angle = 45, # label
hjust = 1, # label
vjust = 2, # label
bracket.colour = "blue", # bracket
bracket.size = 1, # bracket
linetype = "dashed", # bracket
lineend = "round") # bracket
# use glue expression for label
p2 <- p + add_pvalue(df_p_val, label = "p = {label}")
# make bracket tips longer and use coord_flip
p3 <- p + add_pvalue(df_p_val, tip.length = 0.15, coord.flip = TRUE) +
coord_flip()
# change bracket tips independently
# (make one side disappear and the other longer)
p4 <- p + add_pvalue(df_p_val, tip.length = c(0.2, 0))
(p1 + p2) / (p3 + p4)
Even if you don’t want brackets, add_pvalue()
is also
useful for adding significance text to plots with the correct/automatic
positioning.
In the example above, if you wanted the text but not the bracket, you
can just use the remove.bracket
argument. In this case, you
must use the x
argument to change the x position of the
text.
# position label above "group1"
p1 <- p + add_pvalue(df_p_val, label = "p = {label}",
remove.bracket = TRUE, x = 1)
# position label between x = 1 and x = 2
p2 <- p + add_pvalue(df_p_val, label = "p = {label}",
remove.bracket = TRUE, x = 1.5)
p1 + p2
Here is another example of ‘text only’ plot using the
ToothGrowth
data set.
str(ToothGrowth)
#> 'data.frame': 60 obs. of 3 variables:
#> $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
#> $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
#> $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
# create a box plot of the ToothGrowth data set
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = dose), colour = "black") +
theme_prism() +
theme(legend.position = "none")
p
Next we’ll perform two t-tests and compare the means against
dose = 0.5
as a reference group. Then we’ll correct the
p-values for multiple testing.
# compare means again reference
result1 <- t.test(len ~ dose,
data = subset(ToothGrowth, dose %in% c(0.5, 1.0)))$p.value
result2 <- t.test(len ~ dose,
data = subset(ToothGrowth, dose %in% c(0.5, 2.0)))$p.value
# Benjamini-Hochberg correction for multiple testing
result <- p.adjust(c(result1, result2), method = "BH")
We can now construct a p-value table. Note that in this case we don’t
need to to specify a "group2"
column for xmax. This is
because text-only p-value annotations just have an x position
(x
) and not an x range (xmin
and
xmax
).
# don't need group2 column (i.e. xmax)
# instead just specify x position in the same way as y.position
df_p_val <- data.frame(
group1 = c(0.5, 0.5),
group2 = c(1, 2),
x = c(2, 3),
label = signif(result, digits = 3),
y.position = c(35, 35)
)
Then we add the p-values to the plot. As before, you can change how the labels look quite easily.
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "label",
y.position = "y.position")
p2 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p = {label}",
y.position = "y.position",
label.size = 3.2,
fontface = "bold")
p1 + p2
If you want the label number format to look nicer you can provide a
column name to label
with plotmath expressions and
set parse = TRUE
. This works with or without brackets.
# plotmath expression to have superscript exponent
df_p_val$p.exprs <- paste0("P==1*x*10^", round(log10(df_p_val$label), 0))
# as above but with italics
df_p_val$p.exprs.ital <- lapply(
paste(round(log10(df_p_val$label), 0)),
function(x) bquote(italic("P = 1x10"^.(x)))
)
p1 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p.exprs",
y.position = "y.position",
parse = TRUE)
p2 <- p + add_pvalue(df_p_val,
xmin = "group1",
x = "x",
label = "p.exprs.ital",
y.position = "y.position",
parse = TRUE)
p1 + p2
rstatix
packageAs add_pvalue()
is ultimately just a rewritten version
of stat_pvalue_manual()
, it works well with the rstatix
package.
With rstatix
,
you can perform the statistical test and create the p-value table with
the appropriate x and y position automatically, in a single step.
Here we will use add_pvalue()
and rstatix
to
show many more examples of how to add p-values to different plots.
Compare mean len
depending on supp
. Error
bars indicate 1 standard deviation from the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ supp) %>%
rstatix::add_x_position()
p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 35)) +
scale_y_continuous(breaks = seq(0, 35, 5), expand = c(0, 0))
# normal plot
p + add_pvalue(df_p_val, y.position = 30)
Compare mean len
of each dose to
dose = 0.5
. Error bars indicate 1 standard deviation from
the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
# with brackets
p1 <- p + add_pvalue(df_p_val, label = "p.adj.signif")
# without brackets
p2 <- p + add_pvalue(df_p_val, label = "p.adj.signif", remove.bracket = TRUE)
p1 + p2
Now, compare overall mean len
(base mean) to the mean
len
for each dose
. Error bars indicate 1
standard deviation from the mean.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "all")
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
p + add_pvalue(df_p_val,
label = "p.adj.signif",
y.position = 35)
Now, compare the mean len
for each dose
to
some arbitrary value, say 26
in this case. Error bars
indicate 1 standard deviation from the mean.
df_p_val <- ToothGrowth %>%
rstatix::group_by(factor(dose)) %>%
rstatix::t_test(len ~ 1, mu = 26) %>%
rstatix::adjust_pvalue(p.col = "p", method = "holm") %>%
rstatix::add_significance(p.col = "p.adj")
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
stat_summary(geom = "col", fun = mean) +
stat_summary(geom = "errorbar",
fun = mean,
fun.min = function(x) mean(x) - sd(x),
fun.max = function(x) mean(x) + sd(x),
width = 0.3) +
theme_prism() +
coord_cartesian(ylim = c(0, 40)) +
scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0))
# remember xmin and x are referring to the column dames in df_p_val
p + add_pvalue(df_p_val,
xmin = "group1",
x = "factor(dose)",
y = 37,
label = "p.adj.signif")
Compare mean len
across the 3 different
dose
. Use the bracket.shorten
argument to
slightly shorten side-by-side brackets.
df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose)
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_violin(trim = FALSE) +
geom_boxplot(width = 0.2) +
theme_prism() +
coord_cartesian(ylim = c(0, 45)) +
scale_y_continuous(breaks = seq(0, 45, 5), expand = c(0, 0))
p + add_pvalue(df_p_val,
y.position = c(44, 41, 44),
bracket.shorten = c(0.025, 0, 0.025))
Pairwise comparisons between groups of the
ToothGrowth
data set, grouped according to
supp
. The boxplots and the brackets are automatically
coloured according to supp
. Three important points for this
graph:
supp
) and
the column must contain the groups to group by (in this case
"OJ" or "VC"
.geom_boxplot()
) and
not in the ggplot()
function.step.group.by = "supp"
to automatically
change the bracket spacing between different groups.df_p_val <- ToothGrowth %>%
rstatix::group_by(supp) %>%
rstatix::t_test(len ~ dose) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism()
# remember colour and step.group.by are referring to a column name in df_p_val
p + add_pvalue(df_p_val,
label = "p = {p.adj}",
colour = "supp",
fontface = "bold",
step.group.by = "supp",
step.increase = 0.1,
tip.length = 0,
bracket.colour = "black",
show.legend = FALSE)
Pairwise comparisons within groups of the
ToothGrowth
data set, grouped according to
supp
.
df_p_val <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>%
rstatix::add_significance(p.col = "p.adj") %>%
rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning!
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism() +
coord_cartesian(ylim = c(0, 40))
p + add_pvalue(df_p_val,
xmin = "xmin",
xmax = "xmax",
label = "p = {p.adj}",
tip.length = 0)
Pairwise comparisons within groups and between
groups of the ToothGrowth
data set, grouped according
to supp
. You can use bracket.nudge.y
to
slightly adjust the overall y position of the brackets instead of having
to redefine df_p_val2
.
df_p_val1 <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>%
rstatix::add_significance(p.col = "p.adj") %>%
rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning!
df_p_val2 <- rstatix::t_test(ToothGrowth, len ~ dose,
p.adjust.method = "bonferroni") %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(aes(fill = supp)) +
theme_prism() +
coord_cartesian(ylim = c(0, 45))
p + add_pvalue(df_p_val1,
xmin = "xmin",
xmax = "xmax",
label = "p = {p.adj}",
tip.length = 0) +
add_pvalue(df_p_val2,
label = "p = {p.adj}",
tip.length = 0.01,
bracket.nudge.y = 2,
step.increase = 0.015)
Facet according to dose
and then compare mean
len
between either supp
. It is important that
the p-value table must have a column with the same name
as the faceting variable (in this case "dose"
).
df_p_val <- ToothGrowth %>%
rstatix::group_by(dose) %>%
rstatix::t_test(len ~ supp) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) +
geom_boxplot(width = 0.2) +
facet_wrap(
~ dose, scales = "free",
labeller = labeller(dose = function(x) paste("dose =", x))
) +
theme_prism()
p + add_pvalue(df_p_val)
Facet according to supp
and then compare mean
len
between the three dose
. It is important
that the p-value table must have a column with the same
name as the faceting variable (in this case "supp"
).
df_p_val <- ToothGrowth %>%
rstatix::group_by(supp) %>%
rstatix::t_test(len ~ dose) %>%
rstatix::add_xy_position()
p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) +
geom_boxplot(width = 0.4) +
facet_wrap(~ supp, scales = "free") +
theme_prism()
p + add_pvalue(df_p_val)
Facet according to some particular grouping variable called
grp
and dose
, and then compare mean
len
between either supp
. It is important that
the p-value table must have columns with the same names
as the two faceting variables (in this case "grp"
and
"dose"
).
# add a grouping variable to ToothGrowth
tg <- ToothGrowth
tg$dose <- factor(tg$dose)
tg$grp <- factor(rep(c("grp1", "grp2"), 30))
# construct the p-value table by hand
df_p_val <- data.frame(
group1 = c("OJ", "OJ"),
group2 = c("VC", "VC"),
p.adj = c(0.0449, 0.00265),
y.position = c(22, 27),
grp = c("grp1", "grp2"),
dose = c("0.5", "1")
)
p <- ggplot(tg, aes(x = factor(supp), y = len)) +
geom_boxplot(width = 0.4) +
facet_wrap(grp ~ dose, scales = "free") +
theme_prism()
p + add_pvalue(df_p_val, bracket.nudge.y = 3)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.