The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette is still work in progress. But the examples are hopefully already helpful and inspiring.
Epi Gantt plots are used to visualize exposure times in infectious disease outbreaks. Hospital outbreaks are a common example for their use. Lying times of patients on different wards can be visualized and potential transmission routes identified. Like this:
linelist_hospital_outbreak
#> # A tibble: 8 × 9
#> Patient ward_name_1 ward_start_of_stay_1 ward_end_of_stay_1 ward_name_2
#> <chr> <chr> <date> <date> <chr>
#> 1 0 intensive care un… 2024-06-12 2024-07-25 <NA>
#> 2 1 intensive care un… 2024-06-26 2024-07-03 <NA>
#> 3 2 intensive care un… 2024-06-28 2024-07-06 <NA>
#> 4 3 intensive care un… 2024-06-19 2024-06-26 general wa…
#> 5 4 general ward 2024-07-03 2024-07-12 <NA>
#> 6 5 general ward 2024-07-04 2024-07-15 <NA>
#> 7 6 general ward 2024-07-06 2024-07-11 <NA>
#> 8 7 general ward 2024-06-30 2024-07-05 <NA>
#> # ℹ 4 more variables: ward_start_of_stay_2 <date>, ward_end_of_stay_2 <date>,
#> # pathogen_detection_1 <date>, pathogen_detection_2 <date>
linelist_hospital_outbreak |>
pivot_longer(
cols = starts_with("ward"),
names_to = c(".value", "num"),
names_pattern = "ward_(name|start_of_stay|end_of_stay)_([0-9]+)",
values_drop_na = TRUE
) -> df_stays_long
df_stays_long |> select(Patient, num:end_of_stay)
#> # A tibble: 9 × 5
#> Patient num name start_of_stay end_of_stay
#> <chr> <chr> <chr> <date> <date>
#> 1 0 1 intensive care unit 2024-06-12 2024-07-25
#> 2 1 1 intensive care unit 2024-06-26 2024-07-03
#> 3 2 1 intensive care unit 2024-06-28 2024-07-06
#> 4 3 1 intensive care unit 2024-06-19 2024-06-26
#> 5 3 2 general ward 2024-06-26 2024-07-13
#> 6 4 1 general ward 2024-07-03 2024-07-12
#> 7 5 1 general ward 2024-07-04 2024-07-15
#> 8 6 1 general ward 2024-07-06 2024-07-11
#> 9 7 1 general ward 2024-06-30 2024-07-05
linelist_hospital_outbreak |>
pivot_longer(cols = starts_with("pathogen"), values_to = "date", values_drop_na = TRUE) -> df_detections_long
df_detections_long |> select(Patient, name, date)
#> # A tibble: 9 × 3
#> Patient name date
#> <chr> <chr> <date>
#> 1 0 pathogen_detection_1 2024-06-30
#> 2 0 pathogen_detection_2 2024-07-09
#> 3 1 pathogen_detection_1 2024-07-01
#> 4 2 pathogen_detection_1 2024-07-01
#> 5 3 pathogen_detection_1 2024-07-06
#> 6 4 pathogen_detection_1 2024-07-07
#> 7 5 pathogen_detection_1 2024-07-07
#> 8 6 pathogen_detection_1 2024-07-08
#> 9 7 pathogen_detection_1 2024-07-13
ggplot(df_stays_long) +
geom_epigantt(aes(y = Patient, xmin = start_of_stay, xmax = end_of_stay, color = name)) +
geom_point(aes(y = Patient, x = date, shape = "Date of pathogen detection"), data = df_detections_long) +
scale_y_discrete_reverse() +
theme_bw() +
theme(legend.position = "bottom")
outbreaks::varicella_sim_berlin |>
filter(center1 == "Platz der Luftbruecke") |>
arrange(onset) |>
slice_head(n = 20) |>
mutate(
fullname = paste(firstname, lastname),
fullname = factor(fullname, levels = rev(fullname))
) |>
pivot_longer(
cols = starts_with(c("arrival", "leave", "center")),
names_to = c(".value", "group"),
names_pattern = "(\\w+)(\\d+)"
) |>
ggplot(aes(y = fullname)) +
geom_epigantt(aes(xmin = arrival, xmax = leave, colour = center), lw_scaling_factor = 100) + # linewidth = 4
# geom_point(aes(x = onset)) +
theme_bw() +
theme(legend.position = "top")
ggplot(outbreaks::measles_hagelloch_1861, aes(y = case_ID, xmin = date_of_prodrome, xmax = date_of_rash, fill = class)) +
geom_vline_year(color = "grey50") +
geom_epigantt() +
scale_x_date(date_breaks = "2 weeks", date_labels = "W%V'%G") +
theme_bw()
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.