The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
ggswissmaps
Introlibrary(ggswissmaps)
## Loading required package: ggplot2
data("shp_df")
class(shp_df)
## [1] "list"
length(shp_df)
## [1] 8
names(shp_df)
## [1] "g1b15" "g1g15_encl" "g1g15_li" "g1g15" "g1k15"
## [6] "g1l15" "g1r15" "g1s15"
# Data description
?shp_df
names(maps2)
## [1] "g1b15" "g1g15_encl" "g1g15_li" "g1g15" "g1k15"
## [6] "g1l15" "g1r15" "g1s15"
# By name
maps2[["g1k15"]]
# By index
maps2[[5]]
The objects contained in maps2
are ggplot
objects. They have been created with ggplot2::ggplot
plus a ggplot2::geom_path
layer with the data in shp_df
. As an example, the previous map is the same as:
ggplot(shp_df[["g1k15"]], aes(x = long, y = lat, group = group)) +
geom_path() +
coord_equal() +
theme_white_f()
The maps2
object, used above, is a list with some maps of swiss territory at various levels (grand regions, cantons, districts, …).
What if one wants to draw a map with a sub-territory? For example, what if I want to have a map with the districts of two cantons? First, I have to select the desired subset from the shp_df
data, and then will apply the maps2_
function to it.
# Data frame with the coordinates of all swiss districts
d <- shp_df[["g1b15"]]
# Look at the structure of the data frame
str(d)
## 'data.frame': 19502 obs. of 21 variables:
## $ long : int 679207 680062 679981 680365 680281 680479 680717 681021 680799 680921 ...
## $ lat : int 245176 244294 244051 243411 241866 241584 240695 240306 239935 239595 ...
## $ order : int 1 2 3 4 5 6 7 8 9 10 ...
## $ hole : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ piece : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ...
## $ group : Factor w/ 192 levels "0.1","1.1","10.1",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ id : chr "0" "0" "0" "0" ...
## $ BZNR : int 101 101 101 101 101 101 101 101 101 101 ...
## $ KTNR : int 1 1 1 1 1 1 1 1 1 1 ...
## $ GRNR : int 4 4 4 4 4 4 4 4 4 4 ...
## $ AREA_HA: int 11303 11303 11303 11303 11303 11303 11303 11303 11303 11303 ...
## $ X_MIN : int 671862 671862 671862 671862 671862 671862 671862 671862 671862 671862 ...
## $ X_MAX : int 686462 686462 686462 686462 686462 686462 686462 686462 686462 686462 ...
## $ Y_MIN : int 229137 229137 229137 229137 229137 229137 229137 229137 229137 229137 ...
## $ Y_MAX : int 245396 245396 245396 245396 245396 245396 245396 245396 245396 245396 ...
## $ X_CNTR : int 678300 678300 678300 678300 678300 678300 678300 678300 678300 678300 ...
## $ Y_CNTR : int 235900 235900 235900 235900 235900 235900 235900 235900 235900 235900 ...
## $ Z_MIN : int 380 380 380 380 380 380 380 380 380 380 ...
## $ Z_MAX : int 914 914 914 914 914 914 914 914 914 914 ...
## $ Z_AVG : int 561 561 561 561 561 561 561 561 561 561 ...
## $ Z_MED : int 557 557 557 557 557 557 557 557 557 557 ...
# The cantons are identified by the KTNR column
# Extract from this data the districts of two cantons
library(dplyr)
d <- d %>% dplyr::filter(KTNR %in% c(18, 21))
# And draw the map
maps2_(d)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.