The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
gnrprod
gnrprod
implements the nonparametric identification of
gross output production functions outlined in Gandhi, Navarro, and
Rivers (2020). The main wrapper function gnrprod
estimates
the parameters of production functions and productivity. The current
version of gnrprod
supports only one flexible input.
To install the latest development version of from Github, run the following from R:
install.packages("devtools")
library(devtools)
::install_github("davidjin0/gnrprod")
devtoolslibrary(gnrprod)
This package features three main functions: gnrprod
,
gnrflex
, and gnriv
. gnrprod
performs the entire production function estimation routine.
gnrflex
performs the first stage of the estimation routine
which returns the flexible input elasticity. gnriv
performs
the second stage of the estimation routine which returns the fixed input
elasticities and productivity.
An example of the use of gnrprod
:
require(gnrprod)
#> Loading required package: gnrprod
# load Colombian plant-level data
<- colombian
data
# estimate production function parameters and productivity
<- gnrprod(output = "RGO", fixed = c("L", "K"), flex = "RI",
gnr_fit share = "share", id = "id", time = "year", data = data)
# print results
gnr_fit#> Gross Output Function:
#> output: "RGO"
#> fixed inputs: c("L", "K")
#> flexible inputs: "RI"
#> data: data
#>
#> Estimates:
#> L K RI
#> 0.2332 0.1124 0.6793
summary(gnr_fit)
#> Gross Output Function:
#> output: "RGO"
#> fixed inputs: c("L", "K")
#> flexible inputs: "RI"
#> data: data
#>
#> Total Productivity:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.1416 12.5365 14.1472 14.8638 16.0179 539.9703
#>
#> Estimates:
#> Estimate
#> L 0.233
#> K 0.112
#> RI 0.679
#>
#> First-Stage Convergence: TRUE with 22 iterations. Sum of Squared Residuals: 315.1547
#> Second-Stage Convergence: TRUE with 75 iterations. Value: 0.002222362
Alternatively, one can use gnrflex
and
gnriv
:
# estimate flexible input elasticities (first stage)
<- gnrflex(output = "RGO", fixed = c("L", "K"), flex = "RI",
gnr_fs share = "share", id = "id", time = "year", data = data)
# print estimate
gnr_fs#> Flexible Input Elasticity:
#> RI
#> 0.6793
#>
#> First-Stage Sum of Squared Residuals: 315.1547
#> Convergence: TRUE
# estimate fixed input elasticities and productivity (second stage)
<- gnriv(object = gnr_fs)
gnr_ss
# print estimates
gnr_ss#> Fixed Input Elasticity:
#> L K
#> 0.2332 0.1124
#>
#> Total Productivity:
#> productivity
#> Min. : 0.1416
#> 1st Qu.: 12.5365
#> Median : 14.1472
#> Mean : 14.8638
#> 3rd Qu.: 16.0179
#> Max. :539.9703
#>
#> Second-Stage Objective Function Value: 0.002222362
#> Convergence: TRUE
Gandhi, Amit, Salvador Navarro, and David Rivers. 2020. “On the Identification of Gross Output Production Functions.” Journal of Political Economy, 128(8): 2973-3016. https://doi.org/10.1086/707736.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.