The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(graphicalExtremes)
library(ggplot2)
library(igraph)
C:4cd061984267.R
The flights
dataset contains daily total delays of major U.S. airlines.
For details, see the corresponding documentation page.
Below, we plot all airports in the dataset.
plotFlights(plotConnections = FALSE, map = "world", xyRatio = 2)
C:4cd061984267.R
To perform an example application, we follow Section 6 of Hentschel et al. (2022).
The subset of airports analyzed there is obtained through a previous clustering step,
whose results are available through the function getFlightDelayData()
.
For more detailed explanations of the individual methods see Vignette “applicationDanube” and the help pages of applied functions.
Note: Due to size restrictions, the CRAN version of this package contains only a part of the full dataset.
A version of this package with the complete dataset is available on GitHub.
# Get IATAs from Texas cluster
<- getFlightDelayData('IATAs', 'tcCluster')
IATAs
# Plot airports + connections (indicating number of flights by thickness)
plotFlights(
IATAs,useAirportNFlights = TRUE,
useConnectionNFlights = TRUE
)
C:4cd061984267.R
For hyperparameter tuning and model comparison purposes, we will use a train-test-split, utilizing some data to estimate the graph structure and parameter matrix, and the remaining data to compute a likelihood value.
# Check whether all dates from the train-test-split are available
# (due to size restrictions, the CRAN version of this package does not contain all dates)
<- tryCatch({
allDatesAvailable getFlightDelayData('dates', dateFilter = c('tcAll'))
TRUE
error = function(...) FALSE)
}, cat('All dates avilable:', allDatesAvailable, '\n')
#> All dates avilable: FALSE
# Create train and test data sets
if(allDatesAvailable){
# Use train-test-split and threshold p from article
<- drop(getFlightDelayData('delays', 'tcCluster', 'tcTrain'))
matEst <- drop(getFlightDelayData('delays', 'tcCluster', 'tcTest'))
matVal <- 0.95
p else {
} # Take all available dates that do not contain NAs
<- drop(getFlightDelayData('delays', 'tcCluster', 'all'))
mat <- apply(is.na(mat), 1, any)
rowHasNA <- mat[!rowHasNA, ]
mat
# Split dates in half
<- floor(nrow(mat)/2)
splitInd <- mat[1:splitInd,]
matEst <- mat[(splitInd+1):nrow(mat),]
matVal
# Use a lower threshold to compensate for the smaller dataset
<- 0.8
p }
C:4cd061984267.R
This function will be used later to compare fitted parameters to empirical ones.
# Compute the empirical extremal correlation matrix
<- emp_chi(matEst, p = p)
emp_chi_mat
# Utility function to plot fitted parameters against true/empirical ones
<- function(G0, G1, xlab = 'Empirical', ylab = 'Fitted'){
plot_fitted_params return(
ggplot()
+ geom_point(aes(
x = G0[upper.tri(G0)],
y = G1[upper.tri(G1)]
))+ geom_abline(slope = 1, intercept = 0)
+ xlab(xlab)
+ ylab(ylab)
) }
C:4cd061984267.R
As a baseline for graphical modelling, we consider the graph with edges representing at least monthly connections between airports.
# Compute undirected flights per connection between selected airports
<- dim(flights$flightCounts)[3]
nYears <- apply(flights$flightCounts[IATAs,IATAs,], c(1, 2), sum)
flightsPerConnection <- flightsPerConnection + t(flightsPerConnection)
flightsPerConnectionUD
# Make flight graph from adjacency matrix
<- 1 * (flightsPerConnectionUD > nYears * 12)
A <- graph_from_adjacency_matrix(A, diag = FALSE, mode = "undirected")
flight_graph
# Plot flight graph
plotFlights(IATAs, graph = flight_graph, clipMap = 1.3, xyRatio = 1)
C:4cd061984267.R
Given the flight_graph
object, we fit a Hüsler–Reiss model with that graphical structure.
# Fit the model
<- fmpareto_graph_HR(
model_fit data = matEst,
graph = flight_graph,
p = p,
method = "vario"
)
# Compute likelihood/ICs
<- loglik_HR(
flights_loglik_graph data = matVal,
p = p,
graph = flight_graph,
Gamma = model_fit
)cat("Flight graph test-loglikelihood =", round(flights_loglik_graph['loglik'], 2), "\n")
#> Flight graph test-loglikelihood = -7831.91
# Plot fitted parameters
plot_fitted_params(emp_chi_mat, Gamma2chi(model_fit))
C:4cd061984267.R
Next, we fit an extremal tree model to the flight delays using emst()
.
# Fit the model
<- emst(data = matEst, p = p, method = "vario")
flights_emst_fit
# Compute likelihood/ICs
<- loglik_HR(
flights_loglik_tree data = matVal,
p = p,
Gamma = flights_emst_fit$Gamma,
graph = flights_emst_fit$graph
)cat("Tree test-loglikelihood =", round(flights_loglik_tree['likelihood'], 2), "\n")
#> Tree test-loglikelihood = NA
# Plot fitted graph, parameters
plotFlights(
IATAs,graph = flights_emst_fit$graph,
xyRatio = 1,
clipMap = 1.3
)plot_fitted_params(emp_chi_mat, Gamma2chi(flights_emst_fit$Gamma))
C:4cd061984267.R
Lastly, we fit a general graphical model with eglearn()
, using a suitable list of penalization parameters.
# Fit the model
<- seq(0, 0.50, length.out = 11)
rholist <- eglearn(matEst, p = p, rholist = rholist, complete_Gamma = TRUE)
flights_eglearn_fit
# Compute likelihood/ICs
<- sapply(seq_along(rholist), FUN = function(j) {
flights_loglik loglik_HR(
data = matVal,
p = p,
Gamma = flights_eglearn_fit$Gamma[[j]],
graph = flights_eglearn_fit$graph[[j]]
) })
C:4cd061984267.R
The “best” penalization parameter can be chosen e.g. such that the test-likelihood is maximized
ggplot(
mapping = aes(x = rholist, y = flights_loglik['loglik', ])) +
geom_line() +
geom_point(shape = 21, size = 3, stroke = 1, fill = "white") +
geom_hline(aes(yintercept = flights_loglik_graph['loglik']), lty = "dashed") +
geom_hline(aes(yintercept = flights_loglik_tree['loglik']), lty = "dotted") +
xlab("rho") +
ylab("Log-likelihood") +
scale_x_continuous(
breaks = rholist,
labels = round(rholist, 3),
sec.axis = sec_axis(
trans = ~., breaks = rholist,
labels = sapply(
$graph,
flights_eglearn_fit::gsize
igraph
),name = "Number of edges"
) )
<- which.max(flights_loglik['loglik',])
best_index cat('Best rho =', rholist[best_index], '\n')
#> Best rho = 0.1
cat('Corresponding test-loglikelihood =', flights_loglik['loglik', best_index])
#> Corresponding test-loglikelihood = -7263.573
C:4cd061984267.R
We plot the estimated graph and parameters of the best fitted model.
<- flights_eglearn_fit$graph[[best_index]]
best_graph <- flights_eglearn_fit$Gamma[[best_index]]
best_Gamma plotFlights(IATAs, graph = best_graph, clipMap = 1.3, xyRatio = 1)
plot_fitted_params(emp_chi_mat, Gamma2chi(best_Gamma))
C:4cd061984267.R
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.