The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
greta.gam lets you use mgcv’s smoother functions and formula syntax to define smooth terms for use in a greta model. You can then define your own likelihood to complete the model, and fit it by MCMC.
The design and architecture of the package was done by Nick Golding, and David L Miller.
Here’s a simple example adapted from the mgcv
?gam
help file. In mgcv
:
## Loading required package: nlme
## This is mgcv 1.9-1. For overview type 'help("mgcv-package")'.
set.seed(2024 - 12 - 12)
# simulate some data...
dat <- gamSim(1, n = 400, dist = "normal", scale = 0.3)
## Gu & Wahba 4 term additive model
## y x0 x1 x2 x3 f f0 f1
## 1 6.189450 0.1965959 0.4034173 0.7343655 0.7300751 5.759744 1.158200 2.240804
## 2 11.198472 0.7164260 0.8771072 0.1027748 0.6644855 11.004222 1.555243 5.778906
## 3 5.100980 0.3620857 0.4601120 0.8524531 0.9341949 4.681517 1.815195 2.509852
## 4 7.441910 0.3910775 0.5848327 0.7292472 0.5560306 7.557107 1.884044 3.220915
## 5 7.617724 0.8133072 0.6959593 0.7285362 0.6814503 7.594086 1.106920 4.022560
## 6 7.668790 0.4279599 0.3961759 0.5802106 0.3974592 7.235281 1.948997 2.208585
## f2 f3
## 1 2.3607405 0
## 2 3.6700722 0
## 3 0.3564696 0
## 4 2.4521485 0
## 5 2.4646055 0
## 6 3.0776995 0
##
## Family: gaussian
## Link function: identity
##
## Formula:
## y ~ s(x2)
##
## Estimated degrees of freedom:
## 8.04 total = 9.04
##
## GCV score: 3.829468
##
## Family: gaussian
## Link function: identity
##
## Formula:
## y ~ s(x2)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.08745 0.09673 83.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(x2) 8.036 8.749 91.18 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.667 Deviance explained = 67.4%
## GCV = 3.8295 Scale est. = 3.743 n = 400
Now fitting the same model in greta
. We first start by
setting up the linear predictor for the smooth. That is, the right hand
side of the formula:
## Loading required package: greta
##
## Attaching package: 'greta'
## The following objects are masked from 'package:stats':
##
## binomial, cov2cor, poisson
## The following objects are masked from 'package:base':
##
## %*%, apply, backsolve, beta, chol2inv, colMeans, colSums, diag,
## eigen, forwardsolve, gamma, identity, rowMeans, rowSums, sweep,
## tapply
set.seed(2024 - 02 - 09)
# setup the linear predictor for the smooth
linear_predictor <- smooths(~ s(x2), data = dat)
linear_predictor
## greta array <operation>
##
## [,1]
## [1,] ?
## [2,] ?
## [3,] ?
## [4,] ?
## [5,] ?
## [6,] ?
## [7,] ?
## [8,] ?
## [9,] ?
## [10,] ?
##
## ℹ 390 more values
## Use `print(n = ...)` to see more values
Now we specify the distribution of the response:
dist_sd <- cauchy(0, 1, truncation = c(0, Inf))
distribution(dat$y) <- normal(mean = linear_predictor, sd = dist_sd)
Now let’s make some prediction data
## x2
## 1 0.00000000
## 2 0.01010101
## 3 0.02020202
## 4 0.03030303
## 5 0.04040404
## 6 0.05050505
We run evaluate_smooths
on the linear predicting with
the new prediction data
## greta array <operation>
##
## [,1]
## [1,] ?
## [2,] ?
## [3,] ?
## [4,] ?
## [5,] ?
## [6,] ?
## [7,] ?
## [8,] ?
## [9,] ?
## [10,] ?
##
## ℹ 90 more values
## Use `print(n = ...)` to see more values
Now we specify that as a model object and then fit with MCMC as we do with greta normally:
## greta model
## [1] "greta_mcmc_list" "mcmc.list"
## [1] 4
## [1] 200 100
## linear_preds[1,1] linear_preds[2,1] linear_preds[3,1] linear_preds[4,1]
## 1 3.836603 4.219237 4.602425 4.987857
## 2 3.847180 4.264886 4.683038 5.102981
## 3 3.452852 3.893966 4.335516 4.778819
## 4 3.759649 4.160132 4.560985 4.963330
## 5 4.488837 4.822346 5.156314 5.492142
## linear_preds[5,1]
## 1 5.378742
## 2 5.527242
## 3 5.226353
## 4 5.369286
## 5 5.832501
Now let’s compare the mgcv
model fit to the
greta.gam
fit:
plot(mgcv_fit, scheme = 1, shift = coef(mgcv_fit)[1])
# add in a line for each posterior sample
apply(draws[[1]], 1, lines, x = pred_dat$x2,
col = adjustcolor("firebrick", alpha.f = 0.1))
## NULL
The mgcv
predictions are in the grey ribbon, and the
greta.gam
ones are in red - we can see that the greta
predictions are within the range of the mgcv, which is good news!
greta.gam
uses a few tricks from the jagam
(Wood, 2016) routine in mgcv
to get things to work. Here
are some brief details for those interested in the internal
workings.
GAMs are models with Bayesian interpretations (even when fitted using “frequentist” methods). One can think of the smoother penalty matrix as a prior precision matrix in a Bayesian random effects model. Design matrices are constructed exactly as in the frequentist case. See Miller (2021) for more background on this.
There is a slight difficulty in the Bayesian interpretation of the
GAM in that, in their naïve form the priors are improper as the
nullspace of the penalty (in the 1D case, usually the linear term). To
get proper priors we can use one of the “tricks” employed in Marra &
Wood (2011) – that is to somehow penalise the parts of the penalty that
lead to the improper prior. We take the option provided by
jagam
and create an additional penalty matrix for these
terms (from an eigen-decomposition of the penalty matrix; see Marra
& Wood, 2011).
Marra, G and Wood, SN (2011) Practical variable selection for generalized additive models. Computational Statistics and Data Analysis, 55, 2372–2387.
Miller DL (2021). Bayesian views of generalized additive modelling. arXiv.
Wood, SN (2016) Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv. Journal of Statistical Software 75, no. 7
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.