The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Heterogeneity analysis is a way to explore how the results of a model can vary depending on the characteristics of individuals in a population, and demographic analysis estimates the average values of a model over an entire population.
In practice these two analyses naturally complement each other: heterogeneity analysis runs the model on multiple sets of parameters (reflecting different characteristics found in the target population), and demographic analysis combines the results.
For this example we will use the result from the assessment of a new
total hip replacement previously described in
vignette("d-non-homogeneous", "heemod")
.
The characteristics of the population are input from a table, with one column per parameter and one row per individual. Those may be for example the characteristics of the indiviuals included in the original trial data.
For this example we will use the characteristics of 100 individuals,
with varying sex and age, specified in the data frame
tab_indiv
:
## # A tibble: 100 × 2
## age sex
## <dbl> <int>
## 1 63 1
## 2 53 1
## 3 65 1
## 4 69 0
## 5 53 0
## 6 73 1
## 7 70 1
## 8 58 0
## 9 55 1
## 10 44 0
## # ℹ 90 more rows
res_mod
, the result we obtained from
run_model()
in the Time-varying Markov models
vignette, can be passed to update()
to update the model
with the new data and perform the heterogeneity analysis.
## No weights specified in update, using equal weights.
## Updating strategy 'standard'...
## Updating strategy 'np1'...
The summary()
method reports summary statistics for
cost, effect and ICER, as well as the result from the combined
model.
## An analysis re-run on 100 parameter sets.
##
## * Unweighted analysis.
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 543.46225608 613.9316623 700.2782575 708.7969316
## standard - Effect 10.06345874 21.9825691 27.7806580 26.0330535
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 618.86571941 637.9767000 662.7502398 665.0658758
## np1 - Effect 10.13073146 22.2578591 27.9754765 26.3069512
## np1 - Cost Diff. -163.38052116 -122.7948420 -37.5280177 -43.7310558
## np1 - Effect Diff. 0.06727271 0.2086924 0.2333787 0.2738977
## np1 - Icer -353.62679735 -327.6476693 -177.2782857 -75.8597661
## 3rd Qu. Max.
## standard - Cost 819.1977737 875.943516
## standard - Effect 29.0596426 31.299481
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 696.4029317 712.562995
## np1 - Effect 29.2683350 31.532860
## np1 - Cost Diff. 24.0450377 75.403463
## np1 - Effect Diff. 0.3747771 0.462014
## np1 - Icer 115.2176112 956.915671
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'beginning'.
##
## Values:
##
## utility cost
## standard 26033.05 708796.9
## np1 26306.95 665065.9
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -43.73106 0.2738977 -159.662 standard
The variation of cost or effect can then be plotted.
The results from the combined model can be plotted similarly to the
results from run_model()
.
Weights can be used in the analysis by including an optional column
.weights
in the new data to specify the respective weights
of each strata in the target population.
## # A tibble: 100 × 3
## age sex .weights
## <dbl> <int> <dbl>
## 1 71 1 0.994
## 2 50 1 0.488
## 3 52 1 0.0449
## 4 60 0 0.110
## 5 62 1 0.964
## 6 76 1 0.603
## 7 47 1 0.155
## 8 69 0 0.467
## 9 59 0 0.0459
## 10 60 1 0.767
## # ℹ 90 more rows
## Updating strategy 'standard'...
## Updating strategy 'np1'...
## An analysis re-run on 100 parameter sets.
##
## * Weights distribution:
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.007939 0.258975 0.511461 0.518416 0.760677 0.997668
##
## Total weight: 51.84163
##
## * Values distribution:
##
## Min. 1st Qu. Median Mean
## standard - Cost 470.23578695 605.0062810 626.3537753 673.5474236
## standard - Effect 5.05860925 21.9825691 25.9857701 24.7274433
## standard - Cost Diff. - - - -
## standard - Effect Diff. - - - -
## standard - Icer - - - -
## np1 - Cost 599.19333183 635.5509751 641.3547975 655.1643896
## np1 - Effect 5.07524179 22.2578591 26.1614223 24.9651888
## np1 - Cost Diff. -165.40882382 -99.5031416 15.0010223 -18.3830340
## np1 - Effect Diff. 0.01663254 0.1756522 0.2116899 0.2377455
## np1 - Icer -354.56585682 -304.0330575 65.6679900 151.1504992
## 3rd Qu. Max.
## standard - Cost 766.7567169 878.7813785
## standard - Effect 29.0596426 31.2994814
## standard - Cost Diff. - -
## standard - Effect Diff. - -
## standard - Icer - -
## np1 - Cost 681.5262323 713.3725547
## np1 - Effect 29.2683350 31.5328601
## np1 - Cost Diff. 30.5446941 128.9575449
## np1 - Effect Diff. 0.2995574 0.4665109
## np1 - Icer 156.7853582 7753.3265967
##
## * Combined result:
##
## 2 strategies run for 60 cycles.
##
## Initial state counts:
##
## PrimaryTHR = 1000L
## SuccessP = 0L
## RevisionTHR = 0L
## SuccessR = 0L
## Death = 0L
##
## Counting method: 'beginning'.
##
## Values:
##
## utility cost
## standard 24727.44 673547.4
## np1 24965.19 655164.4
##
## Efficiency frontier:
##
## np1
##
## Differences:
##
## Cost Diff. Effect Diff. ICER Ref.
## np1 -18.38303 0.2377455 -77.32231 standard
Updating can be significantly sped up by using parallel computing. This can be done in the following way:
use_cluster()
functions
(i.e. use_cluster(4)
to use 4 cores).close_cluster()
function.Results may vary depending on the machine, but we found speed gains to be quite limited beyond 4 cores.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.