The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Kernel Density with Hexagon

Features:

library(spatstat.data)
data=bei

Kernel density

Calculating kernel density using hexagonal grid

#specify the x, y vectors
density = hexDensity(x=data$x, y=data$y)
#or just let hexDensity figure it out.
density = hexDensity(data)

Plot result

plotHexDensity(density)
Rplot10

Comparing to density.ppp by spatstat which use square-grid. (eps is to ensure square instead of rectangular grid)

library(ks)
bandwidth = sqrt(diag(Hns.diag(cbind(data$x,data$y)))) #Set bandwidth to be the same default plug-in bandwidth in hexDensity.

library(spatstat.explore)
#eps variable is used to turn the grid square instead of rectangle 
density = density.ppp(data,sigma=bandwidth, eps=diff(range(data$x))/128)
plot.im(density,col=colorRampPalette(viridis::viridis(11)))
Rplot08

Comparison to SpatialKDE package, which can also do hexagonal kernel density but really slow to compute and plot. Selected “bandwidth” and “cell size” values are chosen to best fit with the above examples but may not match perfectly. Note that SpatialKDE does not have option for different bandwidth values in different directions and does not have edge correction.

library(SpatialKDE)
library(dplyr)
library(sp)
library(sf)
library(tmap)
#Prepare data
data <- data.frame(bei) %>%
  st_as_sf(coords = c("x", "y"), dim = "XY") %>%
  st_set_crs(28992) %>%
  select()
cell_size <- 12
band_width <- 160
#Create grid
grid <- data %>%
  create_grid_hexagonal(cell_size = cell_size, side_offset = band_width)
#Calculate KDE
kde <- data %>%
  kde(band_width = band_width, kernel = "quartic", grid = grid)
#Plot
tm_shape(kde) +
  tm_polygons(col = "kde_value",style="cont", palette = "viridis", title = "KDE Estimate",legend.show=FALSE)
Rplot14

MERFISH dataset

Using spatial transcriptomic dataset. This example use MERFISH mouse hypothalamic preoptic region dataset from MerfishData package on bioconductor. Finding density for cells of ‘inhibitory’ cell class.

library(MerfishData)
spe = MouseHypothalamusMoffitt2018()
#filter for just Inhibitory cells on z-layer -0.14.
cdat = data.frame(colData(spe),spatialCoords(spe))
cdat = subset(cdat, cell_class!= "Ambiguous",select = -c(cell_id,sample_id,sex,behavior,neuron_cluster_id))
cdat = subset(cdat,z == -0.14)
cdat.inhibitory = subset(cdat, cell_class == ("Inhibitory"))


#hexDensity
density.inhibitory = hexDensity(cdat.inhibitory$x,cdat.inhibitory$y)
plotHexDensity(density.inhibitory)
Rplot09
#comparison with density.ppp by spatstat

#need to convert into ppp object
cdat.inhibitory = ppp(cdat.inhibitory$x,cdat.inhibitory$y,window = owin(range(cdat.inhibitory$x),range(cdat.inhibitory$y)))

bandwidth = sqrt(diag(Hns.diag(cbind(cdat.inhibitory$x,cdat.inhibitory$y))))
density.inhibitory = density.ppp(cdat.inhibitory,sigma=bandwidth, eps=diff(range(cdat.inhibitory$x))/128)
plot.im(density.inhibitory, col=colorRampPalette(viridis::viridis(11)))
Rplot11

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.