The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Florian Schwendinger Updated: 2023-01-21
This repository contains an R interface to the HiGHS solver. The HiGHS solver, is a high-performance open-source solver for solving linear programming (LP), mixed-integer programming (MIP) and quadratic programming (QP) optimization problems.
The package can be installed from CRAN
install.packages("highs")
or GitLab.
::install_gitlab("roigrp/solver/highs") remotes
It is possible to use a precompile HiGHS library by providing the
system variable R_HIGHS_LIB_DIR
. For example I used
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=/Z/bin/highslib -DCMAKE_POSITION_INDEPENDENT_CODE:bool=ON -DSHARED:bool=OFF -DBUILD_TESTING:bool=OFF
make install
to install the HiGHS library to
/Z/bin/highslib
Sys.setenv(R_HIGHS_LIB_DIR = "/Z/bin/highslib")
install.packages("highs")
# or
# remotes::install_gitlab("roigrp/solver/highs")
library("highs")
args(highs_solve)
#> function (Q = NULL, L, lower, upper, A, lhs, rhs, types, maximum = FALSE,
#> offset = 0, control = list(), dry_run = FALSE)
#> NULL
# Minimize
# x_0 + x_1 + 3
# Subject to
# x_1 <= 7
# 5 <= x_0 + 2 x_1 <= 15
# 6 <= 3 x_0 + 2 x_1
# 0 <= x_0 <= 4
# 1 <= x_1
<- rbind(c(0, 1), c(1, 2), c(3, 2))
A <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
str(s)
#> List of 6
#> $ primal_solution: num [1:2] 0.5 2.25
#> $ objective_value: num 5.75
#> $ status : int 7
#> $ status_message : chr "Optimal"
#> $ solver_msg :List of 6
#> ..$ value_valid: logi TRUE
#> ..$ dual_valid : logi TRUE
#> ..$ col_value : num [1:2] 0.5 2.25
#> ..$ col_dual : num [1:2] 0 0
#> ..$ row_value : num [1:3] 2.25 5 6
#> ..$ row_dual : num [1:3] 0 0.25 0.25
#> $ info :List of 18
#> ..$ valid : logi TRUE
#> ..$ mip_node_count : num -1
#> ..$ simplex_iteration_count : int 2
#> ..$ ipm_iteration_count : int 0
#> ..$ qp_iteration_count : int 0
#> ..$ crossover_iteration_count : int 0
#> ..$ primal_solution_status : chr "Feasible"
#> ..$ dual_solution_status : chr "Feasible"
#> ..$ basis_validity : int 1
#> ..$ objective_function_value : num 5.75
#> ..$ mip_dual_bound : num 0
#> ..$ mip_gap : num Inf
#> ..$ num_primal_infeasibilities: int 0
#> ..$ max_primal_infeasibility : num 0
#> ..$ sum_primal_infeasibilities: num 0
#> ..$ num_dual_infeasibilities : int 0
#> ..$ max_dual_infeasibility : num 0
#> ..$ sum_dual_infeasibilities : num 0
# Minimize
# 0.5 x^2 - 2 x + y
# Subject to
# x <= 3
<- .Machine$double.eps * 100
zero <- rbind(c(1, 0), c(0, zero))
Q <- c(-2, 1)
L <- t(c(1, 0))
A
<- list(log_dev_level = 0L)
cntrl <- highs_solve(Q = Q, L = L, A = A, lhs = 0, rhs = 3, control = cntrl)
s str(s)
#> List of 6
#> $ primal_solution: num [1:2] 2e+00 -1e+07
#> $ objective_value: num -1e+07
#> $ status : int 7
#> $ status_message : chr "Optimal"
#> $ solver_msg :List of 6
#> ..$ value_valid: logi TRUE
#> ..$ dual_valid : logi TRUE
#> ..$ col_value : num [1:2] 2e+00 -1e+07
#> ..$ col_dual : num [1:2] 0 0
#> ..$ row_value : num 2
#> ..$ row_dual : num 0
#> $ info :List of 18
#> ..$ valid : logi TRUE
#> ..$ mip_node_count : num -1
#> ..$ simplex_iteration_count : int 0
#> ..$ ipm_iteration_count : int 0
#> ..$ qp_iteration_count : int 5
#> ..$ crossover_iteration_count : int 0
#> ..$ primal_solution_status : chr "Feasible"
#> ..$ dual_solution_status : chr "Feasible"
#> ..$ basis_validity : int 0
#> ..$ objective_function_value : num -1e+07
#> ..$ mip_dual_bound : num 0
#> ..$ mip_gap : num Inf
#> ..$ num_primal_infeasibilities: int 0
#> ..$ max_primal_infeasibility : num 0
#> ..$ sum_primal_infeasibilities: num 0
#> ..$ num_dual_infeasibilities : int 0
#> ..$ max_dual_infeasibility : num 0
#> ..$ sum_dual_infeasibilities : num 0
The HiGHs C++ library internally supports the matrix formats csc (compressed sparse column matrix) and csr (compressed Sparse Row array). The highs package currently supports the following matrix classes:
"matrix"
dense matrices,"dgCMatrix"
compressed sparse column matrix from the
Matrix package,"dgRMatrix"
compressed sparse row matrix from the
Matrix package,"matrix.csc"
compressed sparse column matrix from the
SparseM package,"matrix.csr"
compressed sparse row matrix from the
SparseM package,"simple_triplet_matrix"
coordinate format from the
slam package.If the constraint matrix A
is provided as
dgCMatrix
, dgRMatrix
, matrix.csc
or matrix.csr
the underlying data is directly passed to
HiGHs otherwise it is first transformed into the csc
format an afterwards passed to HiGHs
library("Matrix")
<- rbind(c(0, 1), c(1, 2), c(3, 2))
A <- as(A, "CsparseMatrix") # dgCMatrix
csc <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s0 A = csc, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
<- as(A, "RsparseMatrix") # dgRMatrix
csr <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s1 A = csr, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
library("SparseM")
<- as.matrix.csc(A)
csc <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s2 A = csc, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
<- as.matrix.csr(A)
csr <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s3 A = csr, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
library("slam")
<- as.simple_triplet_matrix(A)
stm <- highs_solve(L = c(1.0, 1), lower = c(0, 1), upper = c(4, Inf),
s4 A = stm, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
The function highs_available_solver_options
lists the
available solver options
<- highs_available_solver_options()
d "option"]] <- sprintf("`%s`", d[["option"]])
d[[::kable(d, row.names = FALSE) knitr
option | type | category |
---|---|---|
allow_unbounded_or_infeasible |
bool | advanced |
allowed_cost_scale_factor |
integer | advanced |
allowed_matrix_scale_factor |
integer | advanced |
cost_scale_factor |
integer | advanced |
dual_simplex_cost_perturbation_multiplier |
double | advanced |
dual_simplex_pivot_growth_tolerance |
double | advanced |
dual_steepest_edge_weight_error_tolerance |
double | advanced |
dual_steepest_edge_weight_log_error_threshold |
double | advanced |
factor_pivot_threshold |
double | advanced |
factor_pivot_tolerance |
double | advanced |
keep_n_rows |
integer | advanced |
less_infeasible_DSE_check |
bool | advanced |
less_infeasible_DSE_choose_row |
bool | advanced |
log_dev_level |
integer | advanced |
lp_presolve_requires_basis_postsolve |
bool | advanced |
max_dual_simplex_cleanup_level |
integer | advanced |
max_dual_simplex_phase1_cleanup_level |
integer | advanced |
mps_parser_type_free |
bool | advanced |
no_unnecessary_rebuild_refactor |
bool | advanced |
presolve_pivot_threshold |
double | advanced |
presolve_rule_logging |
bool | advanced |
presolve_rule_off |
integer | advanced |
presolve_substitution_maxfillin |
integer | advanced |
primal_simplex_bound_perturbation_multiplier |
double | advanced |
rebuild_refactor_solution_error_tolerance |
double | advanced |
run_crossover |
bool | advanced |
simplex_dualise_strategy |
integer | advanced |
simplex_initial_condition_check |
bool | advanced |
simplex_initial_condition_tolerance |
double | advanced |
simplex_permute_strategy |
integer | advanced |
simplex_price_strategy |
integer | advanced |
simplex_unscaled_solution_strategy |
integer | advanced |
start_crossover_tolerance |
double | advanced |
use_implied_bounds_from_presolve |
bool | advanced |
use_original_HFactor_logic |
bool | advanced |
dual_feasibility_tolerance |
double | file |
glpsol_cost_row_location |
integer | file |
highs_analysis_level |
integer | file |
highs_debug_level |
integer | file |
infinite_bound |
double | file |
infinite_cost |
double | file |
ipm_iteration_limit |
integer | file |
ipm_optimality_tolerance |
double | file |
large_matrix_value |
double | file |
log_file |
string | file |
objective_bound |
double | file |
objective_target |
double | file |
primal_feasibility_tolerance |
double | file |
random_seed |
integer | file |
simplex_crash_strategy |
integer | file |
simplex_dual_edge_weight_strategy |
integer | file |
simplex_iteration_limit |
integer | file |
simplex_max_concurrency |
integer | file |
simplex_min_concurrency |
integer | file |
simplex_primal_edge_weight_strategy |
integer | file |
simplex_scale_strategy |
integer | file |
simplex_strategy |
integer | file |
simplex_update_limit |
integer | file |
small_matrix_value |
double | file |
solution_file |
string | file |
threads |
integer | file |
write_model_file |
string | file |
write_model_to_file |
bool | file |
write_solution_style |
integer | file |
write_solution_to_file |
bool | file |
icrash |
bool | icrash |
icrash_approx_iter |
integer | icrash |
icrash_breakpoints |
bool | icrash |
icrash_dualize |
bool | icrash |
icrash_exact |
bool | icrash |
icrash_iterations |
integer | icrash |
icrash_starting_weight |
double | icrash |
icrash_strategy |
string | icrash |
log_to_console |
bool | logging |
output_flag |
bool | logging |
mip_abs_gap |
double | mip |
mip_detect_symmetry |
bool | mip |
mip_feasibility_tolerance |
double | mip |
mip_heuristic_effort |
double | mip |
mip_lp_age_limit |
integer | mip |
mip_max_improving_sols |
integer | mip |
mip_max_leaves |
integer | mip |
mip_max_nodes |
integer | mip |
mip_max_stall_nodes |
integer | mip |
mip_min_cliquetable_entries_for_parallelism |
integer | mip |
mip_pool_age_limit |
integer | mip |
mip_pool_soft_limit |
integer | mip |
mip_pscost_minreliable |
integer | mip |
mip_rel_gap |
double | mip |
mip_report_level |
integer | mip |
parallel |
string | run-time |
presolve |
string | run-time |
ranging |
string | run-time |
solver |
string | run-time |
time_limit |
double | run-time |
for additional information see the HiGHS homepage.
HiGHS currently has the following status codes defined in
HConst.h"
.
enumerator | status | message |
---|---|---|
kNotset |
0 | "Not Set" |
kLoadError |
1 | "Load error" |
kModelError |
2 | "Model error" |
kPresolveError |
3 | "Presolve error" |
kSolveError |
4 | "Solve error" |
kPostsolveError |
5 | "Postsolve error" |
kModelEmpty |
6 | "Empty" |
kOptimal |
7 | "Optimal" |
kInfeasible |
8 | "Infeasible" |
kUnboundedOrInfeasible |
9 | "Primal infeasible or unbounded" |
kUnbounded |
10 | "Unbounded" |
kObjectiveBound |
11 | "Bound on objective reached" |
kObjectiveTarget |
12 | "Target for objective reached" |
kTimeLimit |
13 | "Time limit reached" |
kIterationLimit |
14 | "Iteration limit reached" |
kUnknown |
15 | "Unknown" |
kMin |
0 | "Not Set" |
kMax |
15 | "Unknown" |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.