The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(hmcdm)
= length(Test_versions)
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = nrow(Test_order)
L = J/L Jt
<- TPmat(K)
TP <- rOmega(TP)
Omega_true <- sample(1:2^K, N, replace = L)
class_0 <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
<- inv_bijectionvector(K,(class_0[i]-1))
Alphas_0[i,]
}<- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)
Alphas <- matrix(runif(J*2,.1,.2), ncol=2)
itempars_true
<- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
Y_sim itempars=itempars_true)
= hmcdm(Y_sim,Q_matrix,"DINA_FOHM",Design_array,100,30)
output_FOHM #> 0
output_FOHM#>
#> Model: DINA_FOHM
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_FOHM)
#>
#> Model: DINA_FOHM
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.11392 0.1509
#> 0.15264 0.1265
#> 0.14103 0.2159
#> 0.12370 0.1917
#> 0.09824 0.1247
#> ... 45 more items
#>
#> Transition Parameters:
#> [1] 0.03612 0.04023 0.08724 0.06184 0.02024 0.03171 0.02305 0.15487 0.08500
#> [10] 0.11492 0.03781 0.08584 0.05697 0.03249 0.04251 0.08916
#> ... 15 more rows
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.2068
#> 0001 0.1451
#> 0010 0.2370
#> 0011 0.1836
#> 0100 0.1632
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18511.88
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5016
#> M2: 0.49
#> total scores: 0.6248
<- summary(output_FOHM)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.11392417
#> [2,] 0.15264000
#> [3,] 0.14103456
#> [4,] 0.12370413
#> [5,] 0.09824396
#> [6,] 0.16858381
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.9257143 0.9485714 0.9757143 0.9785714 0.9785714
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.7371429 0.8171429 0.9114286 0.9314286 0.9228571
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2207.458 NA 14536.61 1234.847 17978.92
#> D(theta_bar) 2114.333 NA 14142.28 1189.343 17445.95
#> DIC 2300.582 NA 14930.95 1280.352 18511.88
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.76 0.28 0.82 0.18 0.42
#> [2,] 0.66 0.58 0.34 0.36 0.92
#> [3,] 0.98 0.30 1.00 0.82 0.56
#> [4,] 0.26 0.38 0.72 0.80 0.22
#> [5,] 0.70 0.46 0.68 0.70 0.22
#> [6,] 0.66 0.66 0.80 0.56 1.00
head(a$PPP_item_means)
#> [1] 0.58 0.54 0.64 0.60 0.42 0.44
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.28 0.30 0.28 0.70 0.16 0.54 0.58 0.70 0.72 0.10 0.98 0.84 0.48
#> [2,] NA NA 0.36 0.86 0.38 0.72 0.46 0.38 0.74 0.78 0.66 0.20 0.10 0.12
#> [3,] NA NA NA 0.54 0.34 0.56 0.82 0.82 0.62 0.18 0.38 0.42 0.28 0.82
#> [4,] NA NA NA NA 0.42 0.90 0.90 0.26 0.80 0.58 0.26 0.20 0.22 0.30
#> [5,] NA NA NA NA NA 0.10 0.58 0.82 1.00 0.56 0.02 0.28 0.22 0.12
#> [6,] NA NA NA NA NA NA 0.32 0.86 0.52 0.74 0.08 0.02 0.28 0.16
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.96 0.98 0.94 0.70 0.96 0.28 0.50 0.24 0.14 0.56 0.04 0.44
#> [2,] 0.20 0.84 0.64 0.20 0.30 0.18 0.78 0.06 0.96 0.98 0.10 0.96
#> [3,] 0.04 0.78 0.70 0.86 0.60 0.88 0.72 0.76 0.40 0.80 0.68 0.24
#> [4,] 0.30 0.54 0.68 0.30 0.56 0.76 0.92 0.28 0.88 0.84 0.62 1.00
#> [5,] 0.76 0.52 0.58 0.42 0.36 0.10 0.86 0.24 0.88 0.86 0.56 0.64
#> [6,] 0.22 0.76 0.20 0.84 0.58 0.42 0.42 0.12 0.74 0.94 0.18 0.66
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.60 0.20 0.50 0.16 0.98 0.20 0.28 0.52 0.74 0.54 0.18 0.88
#> [2,] 0.30 0.90 0.80 0.20 0.92 0.94 0.10 0.90 0.40 0.64 0.20 1.00
#> [3,] 0.50 0.14 0.22 0.92 0.20 0.10 0.24 0.20 0.10 0.60 0.84 0.22
#> [4,] 0.06 0.96 0.88 0.90 0.76 0.18 0.68 0.22 0.80 0.98 0.18 0.60
#> [5,] 0.60 0.72 0.86 0.24 0.74 0.50 0.16 0.84 0.42 0.48 0.84 0.92
#> [6,] 0.28 0.76 0.84 0.34 0.46 0.64 0.04 0.74 0.32 0.62 0.16 0.62
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.76 0.24 0.06 0.52 0.10 0.54 0.54 0.08 0.04 0.26 0.60 0.20
#> [2,] 0.70 0.34 0.66 0.02 0.80 0.30 0.20 0.80 0.96 0.62 0.54 0.48
#> [3,] 0.24 0.36 0.90 0.54 0.04 0.56 0.50 0.68 0.48 0.32 0.70 0.36
#> [4,] 0.02 0.56 0.32 0.34 0.32 0.32 0.14 0.16 0.84 0.86 0.42 0.32
#> [5,] 0.82 0.60 0.74 0.00 0.92 0.18 0.90 0.70 0.36 0.76 0.78 0.76
#> [6,] 0.66 0.80 0.82 0.22 0.36 0.34 0.74 0.22 0.76 0.68 0.62 0.14
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.