The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
TP <- TPmat(K)
Omega_true <- rOmega(TP)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
Alphas <- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)
itempars_true <- matrix(runif(J*2,.1,.2), ncol=2)
Y_sim <- sim_hmcdm(model="DINA",Alphas,Q_matrix,Design_array,
itempars=itempars_true)output_FOHM = hmcdm(Y_sim,Q_matrix,"DINA_FOHM",Design_array,100,30)
#> 0
output_FOHM
#>
#> Model: DINA_FOHM
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_FOHM)
#>
#> Model: DINA_FOHM
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1608 0.1285
#> 0.1918 0.2048
#> 0.1378 0.2567
#> 0.2098 0.2158
#> 0.1816 0.1293
#> ... 45 more items
#>
#> Transition Parameters:
#> [1] 0.02909 0.04587 0.03618 0.04830 0.15715 0.03313 0.05721 0.02544 0.03755
#> [10] 0.06410 0.06371 0.03695 0.04014 0.05010 0.25844 0.01663
#> ... 15 more rows
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.1944
#> 0001 0.1329
#> 0010 0.2160
#> 0011 0.2464
#> 0100 0.1279
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 18901.53
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.5036
#> M2: 0.49
#> total scores: 0.6264
a <- summary(output_FOHM)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.1608014
#> [2,] 0.1918233
#> [3,] 0.1378178
#> [4,] 0.2097728
#> [5,] 0.1816050
#> [6,] 0.2081184AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.9250000 0.9371429 0.9728571 0.9878571 0.9921429
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.7342857 0.7800000 0.8971429 0.9514286 0.9685714a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2089.519 NA 14968.72 1259.491 18317.73
#> D(theta_bar) 2041.764 NA 14487.14 1205.031 17733.93
#> DIC 2137.274 NA 15450.31 1313.952 18901.53
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.26 0.72 0.26 0.70 0.92
#> [2,] 0.92 0.98 0.86 0.04 0.94
#> [3,] 0.56 0.86 0.08 1.00 0.28
#> [4,] 0.82 0.60 0.92 0.60 0.76
#> [5,] 0.54 0.48 0.38 0.54 0.70
#> [6,] 0.62 0.04 0.72 0.62 0.94
head(a$PPP_item_means)
#> [1] 0.52 0.40 0.50 0.44 0.40 0.52
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.24 0.74 0.82 0.48 0.66 0.76 0.78 0.74 0.82 0.50 0.66 0.26 0.34
#> [2,] NA NA 0.26 0.42 0.44 0.50 0.62 0.30 0.24 0.32 1.00 0.24 0.22 0.96
#> [3,] NA NA NA 0.98 0.46 0.84 0.24 0.36 0.30 0.64 0.96 0.58 0.56 0.66
#> [4,] NA NA NA NA 0.68 0.44 0.54 0.96 0.66 0.70 1.00 0.20 0.94 0.94
#> [5,] NA NA NA NA NA 0.78 0.58 0.12 0.60 0.62 0.54 0.80 0.24 0.86
#> [6,] NA NA NA NA NA NA 0.30 0.84 0.34 0.34 0.92 0.80 0.40 1.00
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.56 0.10 0.62 0.98 0.50 0.48 0.58 0.24 0.48 0.64 0.62 0.84
#> [2,] 0.94 0.54 0.60 0.44 0.94 0.86 0.80 0.02 0.50 0.78 0.58 0.80
#> [3,] 0.68 0.78 0.50 0.64 0.72 0.96 0.26 0.14 0.88 0.60 0.90 0.12
#> [4,] 0.64 0.86 0.12 0.68 0.18 1.00 0.62 0.04 0.78 0.54 0.74 0.12
#> [5,] 0.60 0.44 0.20 0.66 0.82 0.70 0.16 0.10 0.40 0.62 0.34 0.10
#> [6,] 0.78 0.50 0.48 0.72 0.68 0.96 0.78 0.08 0.12 1.00 0.16 0.54
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.76 0.14 0.56 0.58 0.54 0.16 0.38 0.54 0.76 0.80 0.52 0.64
#> [2,] 0.26 0.60 0.38 0.32 0.78 0.00 0.00 0.36 0.80 0.58 0.06 0.24
#> [3,] 0.02 0.40 0.28 1.00 0.70 0.16 0.24 0.64 0.58 0.42 0.18 0.34
#> [4,] 0.86 0.22 0.48 0.72 0.68 0.20 0.12 0.04 0.70 0.22 0.16 0.06
#> [5,] 0.34 0.82 0.90 0.68 0.80 0.08 0.38 0.52 0.90 0.58 0.94 0.62
#> [6,] 0.00 0.62 0.96 0.16 0.62 0.04 0.06 0.08 0.98 0.40 0.10 0.46
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1.00 0.32 0.32 0.68 0.82 0.86 0.74 0.64 0.72 1.00 0.90 0.94
#> [2,] 0.50 0.22 0.62 0.60 0.38 0.38 0.20 0.12 0.64 0.70 0.84 0.62
#> [3,] 0.62 0.56 0.54 0.46 0.54 0.60 0.90 0.22 0.66 0.58 0.80 0.36
#> [4,] 0.98 0.32 0.56 0.58 0.22 0.28 1.00 0.56 0.74 0.34 0.64 0.28
#> [5,] 0.72 0.22 0.04 0.46 0.42 0.08 0.24 0.56 0.82 0.28 0.66 0.32
#> [6,] 0.68 0.34 0.20 0.62 0.80 0.66 0.50 0.62 0.54 0.24 0.74 0.24These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.