The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(hmcdm)
= dim(Design_array)[1]
N = nrow(Q_matrix)
J = ncol(Q_matrix)
K = dim(Design_array)[3] L
<- numeric(K)
tau for(k in 1:K){
<- runif(1,.2,.6)
tau[k]
}= matrix(0,K,K)
R # Initial alphas
<- c(.5,.5,.4,.4)
p_mastery <- matrix(0,N,K)
Alphas_0 for(i in 1:N){
for(k in 1:K){
<- which(R[k,]==1)
prereqs if(length(prereqs)==0){
<- rbinom(1,1,p_mastery[k])
Alphas_0[i,k]
}if(length(prereqs)>0){
<- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
Alphas_0[i,k]
}
}
}<- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
Alphas table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 35 107 126 68 14
<- runif(K,.1,.3)
Svec <- runif(K,.1,.3)
Gvec
<- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Y_sim Svec=Svec,Gvec=Gvec)
= hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
output_NIDA_indept 100, 30, R = R)
#> 0
output_NIDA_indept#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.1819 0.2478
#> 0.2579 0.2439
#> 0.1818 0.1654
#> 0.2220 0.2238
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.3727
#> τ2 0.4323
#> τ3 0.2930
#> τ4 0.3812
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.12792
#> 0001 0.04752
#> 0010 0.06378
#> 0011 0.06141
#> 0100 0.07061
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 23555.74
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.4924
#> M2: 0.49
#> total scores: 0.6036
<- summary(output_NIDA_indept)
a head(a$ss_EAP)
#> [,1]
#> [1,] 0.1819058
#> [2,] 0.2578910
#> [3,] 0.1817671
#> [4,] 0.2220104
<- numeric(L)
AAR_vec for(t in 1:L){
<- mean(Alphas[,,t]==a$Alphas_est[,,t])
AAR_vec[t]
}
AAR_vec#> [1] 0.8728571 0.8971429 0.9292857 0.9621429 0.9678571
<- numeric(L)
PAR_vec for(t in 1:L){
<- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
PAR_vec[t]
}
PAR_vec#> [1] 0.5914286 0.6485714 0.7314286 0.8628571 0.8800000
$DIC
a#> Transition Response_Time Response Joint Total
#> D_bar 2270.643 NA 18680.39 1866.094 22817.13
#> D(theta_bar) 2165.676 NA 18052.03 1860.802 22078.51
#> DIC 2375.610 NA 19308.74 1871.385 23555.74
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.94 0.74 0.90 0.74 0.42
#> [2,] 0.68 0.52 0.48 0.38 0.18
#> [3,] 1.00 0.56 0.52 0.50 0.34
#> [4,] 0.32 0.28 0.96 0.76 0.34
#> [5,] 0.50 0.44 0.26 0.68 0.88
#> [6,] 0.28 0.74 0.58 0.84 0.32
head(a$PPP_item_means)
#> [1] 0.90 0.78 0.64 0.14 0.26 0.28
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.14 0.04 0.60 0.54 0.72 0.74 0.36 0.90 0.50 0.12 0.22 0.00 0.94
#> [2,] NA NA 0.52 0.28 0.24 0.44 0.88 0.88 0.32 0.96 0.92 0.66 0.72 0.90
#> [3,] NA NA NA 0.50 0.28 0.72 1.00 0.70 0.66 0.06 0.94 0.86 0.36 0.18
#> [4,] NA NA NA NA 0.06 0.88 0.66 0.70 0.68 0.72 0.44 0.54 0.48 0.20
#> [5,] NA NA NA NA NA 0.28 0.76 0.00 0.22 0.12 0.46 0.48 0.16 0.94
#> [6,] NA NA NA NA NA NA 0.20 0.38 0.94 0.26 0.96 0.74 0.38 0.40
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.84 0.18 0.36 0.32 0.32 0.48 0.56 0.64 0.74 0.12 0.64 0.54
#> [2,] 0.54 0.64 1.00 0.48 0.14 0.80 0.60 0.18 0.76 0.78 0.58 0.10
#> [3,] 0.78 0.82 0.24 0.76 0.22 0.76 0.38 0.42 0.76 0.34 0.50 0.58
#> [4,] 0.56 0.50 0.14 0.82 0.68 0.76 0.30 0.76 0.62 0.86 0.56 0.28
#> [5,] 0.82 0.82 0.56 0.94 0.32 0.84 0.72 0.04 0.66 0.26 0.62 0.74
#> [6,] 0.26 0.12 0.62 0.38 0.88 0.54 0.04 0.40 0.78 0.42 0.56 0.48
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.00 0.14 0.86 0.66 0.84 0.32 0.64 0.44 0.88 0.20 0.84 0.52
#> [2,] 0.74 0.32 0.50 0.86 0.30 0.20 0.22 0.90 0.40 0.02 0.52 0.90
#> [3,] 0.68 0.28 0.02 0.04 0.92 0.84 0.42 0.82 0.36 0.60 0.84 0.30
#> [4,] 0.74 0.84 0.16 0.02 0.88 0.34 0.88 0.62 0.32 0.46 0.88 0.44
#> [5,] 0.32 0.28 0.74 0.44 0.90 0.70 0.38 0.08 0.52 0.22 0.38 0.96
#> [6,] 0.02 0.70 0.04 0.08 0.36 0.96 0.60 0.02 0.44 0.66 0.30 0.60
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 0.64 0.02 0.12 0.40 0.78 0.16 0.14 0.62 0.40 0.94 0.00 0.44
#> [2,] 0.12 0.60 0.90 0.22 0.12 0.66 1.00 0.34 0.06 0.64 1.00 0.78
#> [3,] 0.26 0.90 0.70 0.64 0.18 0.62 0.06 0.26 0.54 0.32 0.76 0.36
#> [4,] 0.70 0.56 0.18 0.62 0.58 0.42 0.22 0.00 0.64 1.00 0.18 0.48
#> [5,] 0.38 0.36 0.28 0.54 0.76 0.52 0.76 0.50 0.46 0.30 0.36 0.80
#> [6,] 0.20 0.04 0.42 0.88 0.04 0.22 0.96 0.30 0.70 0.14 0.24 0.40
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.