The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
tau <- numeric(K)
for(k in 1:K){
tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
# Initial alphas
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
for(k in 1:K){
prereqs <- which(R[k,]==1)
if(length(prereqs)==0){
Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
}
if(length(prereqs)>0){
Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
}
}
}
Alphas <- sim_alphas(model="indept",taus=tau,N=N,L=L,R=R,alpha0=Alphas_0)
table(rowSums(Alphas[,,5]) - rowSums(Alphas[,,1])) # used to see how much transition has taken place
#>
#> 0 1 2 3 4
#> 20 96 156 65 13
Svec <- runif(K,.1,.3)
Gvec <- runif(K,.1,.3)
Y_sim <- sim_hmcdm(model="NIDA",Alphas,Q_matrix,Design_array,
Svec=Svec,Gvec=Gvec)output_NIDA_indept = hmcdm(Y_sim, Q_matrix, "NIDA_indept", Design_array,
100, 30, R = R)
#> 0
output_NIDA_indept
#>
#> Model: NIDA_indept
#>
#> Sample Size: 350
#> Number of Items:
#> Number of Time Points:
#>
#> Chain Length: 100, burn-in: 50
summary(output_NIDA_indept)
#>
#> Model: NIDA_indept
#>
#> Item Parameters:
#> ss_EAP gs_EAP
#> 0.2655 0.2242
#> 0.2151 0.2383
#> 0.1901 0.2788
#> 0.1296 0.3105
#>
#> Transition Parameters:
#> taus_EAP
#> τ1 0.4003
#> τ2 0.3330
#> τ3 0.5419
#> τ4 0.4910
#>
#> Class Probabilities:
#> pis_EAP
#> 0000 0.07875
#> 0001 0.11993
#> 0010 0.06023
#> 0011 0.01711
#> 0100 0.06114
#> ... 11 more classes
#>
#> Deviance Information Criterion (DIC): 23468.5
#>
#> Posterior Predictive P-value (PPP):
#> M1: 0.478
#> M2: 0.49
#> total scores: 0.6039
a <- summary(output_NIDA_indept)
head(a$ss_EAP)
#> [,1]
#> [1,] 0.2655415
#> [2,] 0.2151101
#> [3,] 0.1900912
#> [4,] 0.1295927AAR_vec <- numeric(L)
for(t in 1:L){
AAR_vec[t] <- mean(Alphas[,,t]==a$Alphas_est[,,t])
}
AAR_vec
#> [1] 0.8178571 0.8892857 0.9257143 0.9535714 0.9628571
PAR_vec <- numeric(L)
for(t in 1:L){
PAR_vec[t] <- mean(rowSums((Alphas[,,t]-a$Alphas_est[,,t])^2)==0)
}
PAR_vec
#> [1] 0.4657143 0.6371429 0.7400000 0.8314286 0.8628571a$DIC
#> Transition Response_Time Response Joint Total
#> D_bar 2148.809 NA 18730.15 1826.258 22705.21
#> D(theta_bar) 2065.348 NA 18071.92 1804.659 21941.93
#> DIC 2232.271 NA 19388.37 1847.857 23468.50
head(a$PPP_total_scores)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.00 0.72 0.02 0.48 0.64
#> [2,] 0.86 0.72 0.56 0.96 0.12
#> [3,] 0.98 0.42 0.56 0.40 0.40
#> [4,] 0.52 0.44 0.50 0.88 0.04
#> [5,] 0.92 0.54 0.56 0.70 0.60
#> [6,] 0.56 0.84 0.48 1.00 0.66
head(a$PPP_item_means)
#> [1] 0.72 0.70 0.46 0.62 0.52 0.54
head(a$PPP_item_ORs)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
#> [1,] NA 0.42 0.82 0.66 0.64 0.10 0.92 0.94 0.18 0.36 0.52 0.44 0.32 0.74
#> [2,] NA NA 0.20 0.24 0.72 0.64 0.40 0.84 0.36 0.10 0.74 0.68 0.98 0.70
#> [3,] NA NA NA 0.26 0.14 0.26 0.36 0.82 0.20 0.36 0.22 0.68 0.92 0.18
#> [4,] NA NA NA NA 0.58 0.64 0.56 0.48 0.54 0.26 0.16 0.40 0.74 0.06
#> [5,] NA NA NA NA NA 0.32 0.26 0.26 0.86 0.40 0.66 0.22 0.46 0.44
#> [6,] NA NA NA NA NA NA 0.06 0.06 0.64 0.12 0.24 0.30 0.52 0.62
#> [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
#> [1,] 0.28 0.18 0.18 0.86 0.60 0.70 0.12 0.16 0.74 0.90 0.44 0.48
#> [2,] 0.96 0.50 0.78 0.20 0.36 0.96 0.34 0.52 0.32 0.72 0.50 0.20
#> [3,] 0.30 0.22 0.08 0.96 0.62 0.54 0.74 0.34 0.92 0.72 0.14 0.42
#> [4,] 0.70 0.34 0.08 0.92 0.40 0.14 0.06 0.62 0.98 0.92 0.88 0.40
#> [5,] 0.62 0.18 0.94 0.02 0.98 0.84 0.46 0.58 0.56 0.80 0.90 0.62
#> [6,] 0.84 0.60 0.30 0.86 0.98 0.22 0.82 0.94 0.82 0.80 0.74 0.92
#> [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38]
#> [1,] 0.90 0.58 0.12 0.24 0.36 0.74 0.12 0.76 0.38 0.00 1.00 0.42
#> [2,] 0.74 0.58 0.30 0.58 0.36 0.74 0.80 1.00 0.00 0.54 0.94 0.50
#> [3,] 0.38 0.46 0.32 0.96 0.02 0.76 0.48 0.84 0.58 0.50 0.20 0.42
#> [4,] 0.56 0.18 0.90 0.02 0.00 0.98 0.78 0.42 0.70 0.18 0.98 0.36
#> [5,] 0.20 1.00 0.80 0.90 1.00 0.40 0.04 0.98 0.52 0.90 0.88 0.26
#> [6,] 0.72 0.50 0.46 0.36 0.14 0.78 0.06 0.76 0.70 0.62 0.54 0.14
#> [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
#> [1,] 1.00 0.70 0.24 0.32 0.94 0.90 0.20 0.94 0.36 0.88 0.94 0.68
#> [2,] 0.88 0.34 0.92 0.42 0.54 0.26 0.84 0.96 0.48 0.62 0.20 0.78
#> [3,] 0.42 0.86 0.88 0.82 0.84 0.46 0.78 0.34 0.06 0.68 0.36 0.64
#> [4,] 0.76 0.50 0.22 0.94 0.96 0.34 0.90 0.20 0.78 1.00 1.00 0.68
#> [5,] 0.88 0.40 0.88 0.42 0.34 0.40 0.72 0.32 0.96 0.30 0.60 0.54
#> [6,] 0.02 0.18 0.98 0.30 0.02 0.04 0.72 0.86 0.48 0.82 0.26 0.82These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.