The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

hmsidwR - Health Metrics and the Spread of Infectious Diseases

DOI R-CMD-check CRAN status

The goal of {hmsidwR} is to provide the set of data used in the Health Metrics and the Spread of Infectious Diseases Machine Learning Applications and Spatial Modeling Analysis book.

Installation

install.packages("hmsidwR")

You can install the development version of hmsidwR from GitHub with:

# install.packages("devtools")
devtools::install_github("Fgazzelloni/hmsidwR")

Example

This is a basic example which shows you how to solve a common problem:

library(hmsidwR)
library(dplyr)
data(sdi90_19)
head(subset(sdi90_19, location == "Global"))
#> # A tibble: 6 × 3
#>   location  year value
#>   <chr>    <dbl> <dbl>
#> 1 Global    1990 0.511
#> 2 Global    1991 0.516
#> 3 Global    1992 0.521
#> 4 Global    1993 0.525
#> 5 Global    1994 0.529
#> 6 Global    1995 0.534
sdi_avg <- sdi90_19 |>
  group_by(location) |>
  reframe(sdi_avg = round(mean(value), 3))

head(sdi_avg)
#> # A tibble: 6 × 2
#>   location       sdi_avg
#>   <chr>            <dbl>
#> 1 Aceh             0.58 
#> 2 Acre             0.465
#> 3 Afghanistan      0.238
#> 4 Aguascalientes   0.606
#> 5 Aichi            0.846
#> 6 Akita            0.792
sdi90_19 |>
  filter(location %in% c("Global", "Italy", "France", "Germany")) |>
  group_by(location) |>
  reframe(sdi_avg = round(mean(value), 3)) |>
  head()
#> # A tibble: 4 × 2
#>   location sdi_avg
#>   <chr>      <dbl>
#> 1 France     0.79 
#> 2 Germany    0.863
#> 3 Global     0.58 
#> 4 Italy      0.763

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.