The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Events from individual hydrologic time series are extracted, and events from multiple time series can be matched to each other.
This code can be downloaded from CRAN: https://cran.r-project.org/package=hydroEvents
A detailed description of each function, usage, and suggested parameters is provided in the following: Wasko, C., Guo, D., 2022. Understanding event runoff coefficient variability across Australia using the hydroEvents R package. Hydrol. Process. 36, e14563. https://doi.org/10.1002/hyp.14563
If using this code a citation to the above manuscript would be greatly appreciated.
Aim: Calculate baseflow and baseflow index
This code reproduces Figure 5 in Wasko and Guo (2022).
library(hydroEvents)
.925 = baseflowA(dataBassRiver, alpha = 0.925)$bf
bf.A.980 = baseflowA(dataBassRiver, alpha = 0.980)$bf
bf.A
.925 = baseflowB(dataBassRiver, alpha = 0.925)$bf
bf.B.980 = baseflowB(dataBassRiver, alpha = 0.980)$bf
bf.B
.925 = sum(bf.A.925)/sum(dataBassRiver) # 0.22
bfi.A.980 = sum(bf.A.980)/sum(dataBassRiver) # 0.09
bfi.A.925 = sum(bf.B.925)/sum(dataBassRiver) # 0.39
bfi.B.980 = sum(bf.B.980)/sum(dataBassRiver) # 0.20
bfi.B
plot(dataBassRiver, type = "l", col = "#377EB8", lwd = 2, mgp = c(2, 0.6, 0), ylab = "Flow (ML/day)", xlab = "Index", xlim = c(0, 70))
lines(bf.A.925, lty = 2)
lines(bf.A.980, lty = 3)
lines(bf.B.925, lty = 1)
lines(bf.B.980, lty = 4)
legend("topright", lty = c(2, 3, 1, 4), col = c("black", "black", "black", "black"), cex = 0.8, bty = "n",
legend = c(paste0("BFI(A, 0.925) = ", format(round(bfi.A.925, 2), nsmall = 2)),
paste0("BFI(A, 0.980) = ", format(round(bfi.A.980, 2), nsmall = 2)),
paste0("BFI(B, 0.925) = ", format(round(bfi.B.925, 2), nsmall = 2)),
paste0("BFI(B, 0.980) = ", format(round(bfi.B.980, 2), nsmall = 2))))
Aim: Extract precipitation events
= eventPOT(dataLoch, threshold = 1, min.diff = 2)
events plotEvents(dataLoch, dates = NULL, events = events, type = "hyet", ylab = "Rainfall [mm]", main = "Rainfall Events (threshold = 1, min.diff = 2)")
Aim: Extract flow events (and demonstrate the different methods available)
This code reproduces Figure 6 in Wasko and Guo (2022).
library(hydroEvents)
= baseflowB(dataBassRiver)
bf = eventMaxima(dataBassRiver-bf$bf, delta.y = 10, delta.x = 1, threshold = 0)
Max_res = eventMinima(dataBassRiver-bf$bf, delta.y = 100, delta.x = 3, threshold = 0)
Min_res = eventPOT(dataBassRiver-bf$bf, threshold = 0, min.diff = 1)
PoT_res = eventBaseflow(dataBassRiver, BFI_Th = 0.5, min.diff = 1)
BFI_res
par(mfrow = c(2, 2), mar = c(3, 2.7, 2, 1))
plotEvents(data = dataBassRiver, events = PoT_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventPOT")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = Max_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventMaxima")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = Min_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventMinima")
lines(1:length(bf$bf), bf$bf, lty = 2)
plotEvents(data = dataBassRiver, events = BFI_res, ymax = 1160, xlab = "Index", ylab = "Flow (ML/day)", colpnt = "#E41A1C", colline = "#377EB8", main = "eventBaseflow")
lines(1:length(bf$bf), bf$bf, lty = 2)
Aim: Identify rising and falling limbs
library(hydroEvents)
= WQ_Q$qdata[[1]]
qdata = eventBaseflow(qdata$Q_cumecs)
BF_res limbs(data = qdata$Q_cumecs, dates = NULL, events = BF_res, main = "with 'eventBaseflow'")
Aim: Calculate CQ (concentration-discharge) relationships
library(hydroEvents)
# Identify flow events
= WQ_Q$qdata[[1]]
qdata = eventBaseflow(qdata$Q_cumecs)
BF_res = eventMaxima(qdata$Q_cumecs, delta.y = 0.5, threshold = 0.5)
MAX_res
# Aggregate water quality data to daily time step
=WQ_Q$wqdata[[1]]
wqdata= data.frame(time=wqdata$time,wq=as.vector(wqdata$WQ))
wqdata
= rep(NA,length(unique(substr(wqdata$time,1,10))))
wqdaily for (i in 1:length(unique(substr(wqdata$time,1,10)))) {
= mean(wqdata$wq[which(substr(wqdata$time,1,10)==
wqdaily[i] unique(substr(wqdata$time,1,10))[i])])
}= data.frame(time=as.Date(strptime(unique(substr(wqdata$time,1,10)),"%d/%m/%Y")),wq=wqdaily)
wqdailydata
# A function to plot the CQ relationship by event period
= function(C,Q,events,methodname) {
CQ_event = which(Q$time%in%C$time)
QinWQ
= limbs(data=as.vector(Q$Q_cumecs),events=events,main = paste("Events identified -",methodname))
risfal_res
= unlist(apply(risfal_res,1,function(x){x[6]:x[7]}))
allRL_ind = unlist(apply(risfal_res,1,function(x){x[8]:x[9]}))
allFL_ind
= which(allRL_ind%in%QinWQ)
RL_ind = which(allFL_ind%in%QinWQ)
FL_ind
= unlist(apply(risfal_res,1,function(x){x[1]:x[2]}))
allEV_ind = as.vector(1:length(as.vector(Q$Q_cumecs)))[-allEV_ind]
allBF_ind = which(allEV_ind%in%QinWQ)
EV_ind = which(allBF_ind%in%QinWQ)
BF_ind
= which(QinWQ%in%allRL_ind[RL_ind])
RL_indwq = which(QinWQ%in%allFL_ind[FL_ind])
FL_indwq = which(QinWQ%in%allBF_ind[BF_ind])
BF_indwq = which(QinWQ%in%allEV_ind[EV_ind])
EV_indwq
plot(C$wq~Q$Q_cumecs[QinWQ],xlab="Q (mm/d)",ylab="C (mg/L)",main = paste("C-Q relationship -",methodname),pch=20)
points(C$wq[RL_indwq]~Q$Q_cumecs[allRL_ind[RL_ind]],col="blue",pch=20)
points(C$wq[FL_indwq]~Q$Q_cumecs[allFL_ind[FL_ind]],col="red",pch=20)
points(C$wq[BF_indwq]~Q$Q_cumecs[allBF_ind[BF_ind]],col="grey",pch=20)
legend("topright",
legend=c("rising limb","falling limb","baseflow"),
pch=20,col=c("blue","red","grey"))
= cbind(C$wq,Q$Q_cumecs[QinWQ])
CQ = list(event=EV_indwq,base=BF_indwq,rising=RL_indwq,falling=FL_indwq,
res eventCQ=CQ[EV_indwq,],baseCQ=CQ[BF_indwq,],
risingCQ=CQ[RL_indwq,],fallingCQ=CQ[FL_indwq,])
}
# Final plot of CQ comparison from two event approaches
par(mfcol=c(2,2))
par(mar=c(2,2,2,2))
CQ_event(wqdailydata,qdata, BF_res, methodname="eventBaseflow")
CQ_event(wqdailydata,qdata, MAX_res, methodname="eventMaxima")
Aim: Demonstrate matching rainfall to runoff
library(hydroEvents)
# Prepare data
= as.Date("2015-02-05"))
srt = as.Date("2015-04-01"))
end = dataCatchment$`105105A`[which(dataCatchment$`105105A`$Date >= srt & dataCatchment$`105105A`$Date <= end),]
dat
# Extract events
= eventPOT(dat$Precip_mm, threshold = 1, min.diff = 1)
events.P = eventMaxima(dat$Flow_ML, delta.y = 2, delta.x = 1, thresh = 70)
events.Q
par(mfrow = c(2, 1), mar = c(3, 2.7, 2, 1))
plotEvents(dat$Precip_mm, dates = dat$Date, events = events.P, type = "hyet", colline = "#377EB8", colpnt = "#E41A1C",ylab = "Rainfall (mm)", xlab = 2015, main = "")
plotEvents(dat$Flow_ML, dates = dat$Date, events = events.Q, type = "lineover", colpnt = "#E41A1C", colline = "#377EB8", ylab = "Flow (ML/day)", xlab = 2015, main = "")
The following code reproduces Figure 7 in Wasko and Guo (2022).
# Match events
library(RColorBrewer)
.1 = pairEvents(events.P, events.Q, lag = 5, type = 1)
matched.2 = pairEvents(events.P, events.Q, lag = 5, type = 2)
matched.3 = pairEvents(events.P, events.Q, lag = 3, type = 3)
matched.4 = pairEvents(events.P, events.Q, lag = 7, type = 4)
matched.5 = pairEvents(events.P, events.Q, lag = 5, type = 5)
matched
par(mfrow = c(3, 2), mar = c(1.7, 3, 2.1, 3))
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.1, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 1", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3) # OK PRESENT
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.2, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 2", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3) # OK
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.3, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 3", ylab.2 = "Rainfall (mm)", ylab.1 = "Flow (ML/day)", cex.2 = 2/3) # OK PRESENT (In discussion?)
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.4, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 4", ylab.2 = "Rainfall (mm)", ylab.1 = "Flow (ML/day)", cex.2 = 2/3)
plotPairs(data.1 = dat$Precip_mm, data.2 = dat$Flow_ML, events = matched.5, date = dat$Date, col = brewer.pal(nrow(events.P), "Set3"), main = "Type 5", ylab.1 = "Rainfall (mm)", ylab.2 = "Flow (ML/day)", cex.2 = 2/3) # OK
Aim: Demonstrate matching of rainfall and water level surge (residuals)
library(hydroEvents)
# Hourly rainfall (P) and water level surge (WL) at Burnie, Tasmania (Pluvio 91009; Tide gauge: IDO71005)
= data_P_WL$Psel
Psel = data_P_WL$WLsel
WLsel
# Find events in P and WL data
# Rain over 4mm is considered an event; events over 3 hrs apart are considered as separate
= eventPOT(Psel, threshold = 4, min.diff = 3)
events.P
# WL surge residual over 0.05m is considered an event; events over 3 hrs apart are considered as separate
= eventMaxima(WLsel, delta.y = 0.05, delta.x = 3, thresh = 0.05)
events.Q1
# Plot events
plotEvents(data = Psel, events = events.P, main = "Hourly precipitation (mm)", type = "hyet")
plotEvents(data = WLsel, events = events.Q1, main = "Hourly water level surge (m)", type = "lineover")
# Pairing events - use type = 5 to search both ways for the pairing
# Try two different values for the lag (search radius)
.1 = pairEvents(events.P, events.Q1, lag = 12, type = 5)
matched.2 = pairEvents(events.P, events.Q1, lag = 24, type = 5)
matched
plotPairs(data.1 = Psel, data.2 = WLsel, events = matched.1, type = "hyet", color.list=rainbow(nrow(matched.1)))
plotPairs(data.1 = Psel, data.2 = WLsel, events = matched.2, type = "hyet", color.list=rainbow(nrow(matched.2)))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.