The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Hysteresis loops occur when an output variable can have multiple possible values at one input value depending on the history of the system and the direction of change in the input. This package contains functions to simulate, fit, and obtain parameter values along with their standard errors (Yang and Parkhurst) from hysteresis loops of the form $$x_{t}=b_{x}cos(2t\pi/T+\phi)+c_{x}+e_{x,t}$$ $$y_{t}=b_{y}*cos(2t\pi/T+\phi)^{n}+R*sin(2t\pi/T+\phi)^{m}+c_{y}+e_{y,t}$$
where e is a random error term. These generalized transcendental equations (Lapshin) form a hysteresis loop for a given frequency or period and set of time points t=1,2…n.
The plot below uses the function mloop which simulates hysteresis loops to show the effects of choosing various odd values for n and m.
library(knitr)
library(hysteresis)
par(mfrow=c(3,3),mai=c(0,0.2,0.2,0),ann=FALSE,xaxt="n",yaxt="n",oma=c(0,0,3,0))
for (i in c(1,3,15)){
for (j in c(1,3,15)){
obj<-mloop(m=i,n=j,n.points=100,period=99)
plot(floop(obj$x,obj$y,m=i,n=j,period=99),xlim=c(-0.8,0.8),ylim=c(-0.8,0.8))
if (i==1) title(paste("n=",j,sep=""))
if (j==1) title(ylab=paste("m=",i,sep=""),line=0,cex.sub=2)
}
}
title("Hysteresis Loops for Odd Values of m and n",outer=TRUE)
It is also possible to use even values for n.
par(mfrow=c(3,3),mai=c(0,0.2,0.2,0),ann=FALSE,xaxt="n",yaxt="n",oma=c(0,0,3,0))
for (i in c(1,3,15)){
for (j in c(2,4,16)){
obj<-mloop(m=i,n=j,n.points=100,period=99)
plot(floop(obj$x,obj$y,m=i,n=j,period=99),xlim=c(-0.8,0.8),ylim=c(-0.8,0.8))
if (i==1) title(paste("n=",j,sep=""))
if (j==2) title(ylab=paste("m=",i,sep=""),line=0,cex.sub=2)
}
}
title("Hysteresis Loops for Odd Values of m and Even Values of n",outer=TRUE)
A special case is when n=1 and m=1, this makes the hysteresis loop an ellipse. The centroid of the hysteresis loop is given by cx and cy as shown in the plot below of ellipses.
obj<-mloop(cx=0,cy=0,n.points=100,period=99)
obj2<-mloop(cx=1.5,cy=0,n.points=100,period=99)
obj3<-mloop(cx=0,cy=1.5,n.points=100,period=99)
plot(obj$x,obj$y,type="l",xlim=c(-2,3),ylim=c(-2,3),xlab="x",ylab="y",col="#6600CC",main="Centroid Given by cx and cy")
points(0,0,pch=19,col="#6600CC")
text(x=0,y=0.15,"(cx=0,cy=0)",col="#6600CC")
lines(obj2$x,obj2$y,col="#00FF66")
points(1.5,0,pch=19,col="#00FF66")
text(x=1.5,y=0.15,"(cx=1.5,cy=0)",col="#00FF66")
lines(obj3$x,obj3$y,col="#FF6600")
points(0,1.5,pch=19,col="#FF6600")
text(x=0,y=1.65,"(cx=0,cy=1.5)",col="#FF6600")
The saturation points describe where the direction of the input changes sign. The distances from the central point to the saturation points are given by b.x and b.y (saturation points at ($c_{x} \pm b_{x},c_{y} \pm b_{y}$))
for (i in c(1,2,4)){
obj<-mloop(b.x=i,n.points=100,period=99)
plot(obj$x,obj$y,xlim=c(-5,10),ylim=c(-1.4,1.4),type="l",main=paste("b.x=",i,sep=""),xlab="x",ylab="y")
points(i,0.8,pch=19)
legend(i,1,legend=c("Saturation Point","x=cx+b.x","y=cy+b.y"),bty="n")
}
for (i in c(0.8,2,4)){
obj<-mloop(b.y=i,n.points=100,period=99)
plot(obj$x,obj$y,xlim=c(-1,2),ylim=c(-5,5),type="l",main=paste("b.y=",i,sep=""),xlab="x",ylab="y")
points(0.6,i,pch=19)
legend(0.6,i,legend=c("Saturation Point","x=cx+b.x","y=cy+b.y"),bty="n")
}
Retention, or the output split point R, is the vertical distance from center to upper loop trajectory.
for (i in c(1,2,4)){
obj<-mloop(retention=i,n.points=100,period=99)
plot(obj$x,obj$y,xlim=c(-1,1),ylim=c(-5,5),type="l",main=paste("retention=",i,sep=""),xlab="x",ylab="y")
segments(0,0,0,i)
text(0.3,0.5,"Retention")
}
Finally the phase.angle, \(\phi\), changes the location of points along the loop, but does not change the form of the loop itself. When phase.angle is zero, the loop starting point is also the saturation point.
obj<-mloop(retention=0.5,n.points=100,period=99)
plot(obj$x,obj$y,type="l",xlab="x",ylab="y",main="Starting Points for Different Values of phase.angle",xlim=c(-0.6,0.8))
for (i in c(0,90,180,260)){
obj2<-mloop(phase.angle=i,retention=0.5,n.points=1,period=99)
points(obj2$x,obj2$y,pch=19,col="gold",cex=2)
points(obj2$x,obj2$y,col="gold",cex=4)
text(obj2$x+.08,obj2$y,round(i,2))
}
Hysteresis contains one method for fitting hysteresis loops given any n and m in the function floop. In the special case of an ellipse where n=1 and m=1, four methods are available in the function fel. The two-step simple harmonic regression (harmonic2) method, the default, generally produces estimates that are less biased and have lower variances than those produced by the other methods. Since the focus is on rate-dependent hysteresis, knowledge of time for the observations is required (or if unknown, times may be assumed to be equally spaced). On the other hand, if the objective is solely to fit an ellipse, observation times are not needed for the other three methods.
set.seed(24)
ellipse1 <- mel(method=2,retention=0.4,b.x=0.6,b.y=0.8,cx=0,cy=0,sd.x=0.1,sd.y=0.1,phase.angle=0,period=24,n.points=24)
#The function **mel** can be used as an alternative to **mloop** for simulating ellipses, and it is useful because it offers four different ellipse parameterizations.
model <- fel(ellipse1$x,ellipse1$y,method="harmonic2",period=24,times="equal")
#period=24 and times="equal" are used to say that 24 equally spaced points make up an ellipse.
model
## Call:
## fel(x = ellipse1$x, y = ellipse1$y, method = "harmonic2", period = 24,
## times = "equal")
##
## Delta Method Standard Errors and 95% C.I.'s:
## Estimates S.E. low high
## b.x 0.611746 0.02348 0.56242 0.66108
## b.y 0.829397 0.03389 0.75819 0.90061
## phase.angle 0.009077 0.03838 -0.07156 0.08971
## cx -0.013770 0.01660 -0.04865 0.02111
## cy -0.027886 0.02397 -0.07824 0.02247
## retention 0.423527 0.03389 0.35232 0.49474
## coercion 0.278211 0.02252 0.23090 0.32553
## area 0.813959 0.07224 0.66218 0.96574
## lag 1.803394 0.13902 1.51132 2.09546
## split.angle 53.588291 0.02678 53.53202 53.64456
## ampx 0.611746 0.02348 0.56242 0.66108
## ampy 0.931276 0.03389 0.86007 1.00248
## rote.deg 57.956870 1.53618 54.72947 61.18427
In addition to the fundamental values of the model, fel also calculates a wide variety of derived parameters. Definitions for these parameters can be found using help(loop.parameters).
model$Estimates
## b.x b.y phase.angle cx cy retention
## 0.611745822 0.829396933 0.009076523 -0.013769807 -0.027886124 0.423527491
## coercion area lag split.angle hysteresis.x hysteresis.y
## 0.278210971 0.813958926 1.803393783 53.588291060 0.454781971 0.510645114
## ampx ampy rote.deg semi.major semi.minor focus.x
## 0.611745822 0.931275904 57.956870279 1.088509257 0.238023858 0.563540232
## focus.y eccentricity
## 0.900344074 0.975798963
A wide variety of functions have S3 methods for objects of class ellipsefit produced by fel. The most important of these is summary.ellipsefit which can be used to bootstrap and summarize models produced by fel.
summary(model,N=10000,studentize=TRUE)
## Summary Call:
## summary.ellipsefit(object = model, N = 10000, studentize = TRUE)
## Call for Original Fit:
## fel(x = ellipse1$x, y = ellipse1$y, method = "harmonic2", period = 24,
## times = "equal")
## Ellipse Fitting Method:
## [1] "harmonic2"
## [1] "Two step simple harmonic least squares"
##
## Bootstrapped Estimates:
## Boot.Estimate Bias Std.Error B.q0.025 B.q0.975
## b.x 0.61101 7.370e-04 0.025318 0.56113 0.66161
## b.y 0.82986 -4.613e-04 0.040530 0.74803 0.90862
## phase.angle 0.00923 -1.533e-04 0.041201 -0.07001 0.09025
## cx -0.01376 -1.166e-05 0.017812 -0.04791 0.02183
## cy -0.02785 -3.806e-05 0.025572 -0.07379 0.02578
## retention 0.42397 -4.384e-04 0.050119 0.32551 0.52197
## coercion 0.27844 -2.286e-04 0.033084 0.21389 0.34285
## area 0.81384 1.154e-04 0.101911 0.61466 1.01507
## lag 1.80413 -7.357e-04 0.218102 1.38333 2.22993
## split.angle 53.66241 -7.412e-02 1.756372 50.15239 57.02858
## hysteresis.x 0.45569 -9.123e-04 0.050774 0.35576 0.55270
## hysteresis.y 0.50877 1.876e-03 0.072502 0.37467 0.65630
## ampx 0.61101 7.370e-04 0.025318 0.56113 0.66161
## ampy 0.93037 9.057e-04 0.036473 0.85875 1.00120
## rote.deg 57.96201 -5.144e-03 1.655765 54.64828 61.21009
## rote.rad 1.01163 -8.977e-05 0.028899 0.95379 1.06832
## semi.major 1.08727 1.243e-03 0.033664 1.02207 1.15375
## semi.minor 0.23826 -2.352e-04 0.028867 0.18219 0.29472
## focus.x 0.56347 6.796e-05 0.027301 0.51032 0.61747
## focus.y 0.89986 4.798e-04 0.037850 0.82377 0.97388
## eccentricity 0.97615 -3.483e-04 0.006198 0.96278 0.98690
Another important S3 method is for the function plot.
plot(model,main="2-step Simple Harmonic Regression Ellipse Example")
In addition, S3 methods exist for fitted, print, and residuals.
The two most useful ellipse estimation methods implemented by fel are the ‘harmonic2’ and ‘direct’ methods. The ‘direct’ method (Flusser and Halir) fits an ellipse without requiring time information and is more stable than the other two methods in fel, ‘lm’ and ‘nls’, which are based on linear least squares and ellipse-specific nonlinear regression respectively. The ‘direct’ method does not yet have delta method standard errors available.
modeldirect <- fel(ellipse1$x,ellipse1$y,method="direct",period=24,times="equal")
summodel<-summary(modeldirect,N=10000,studentize=TRUE)
summodel
## Summary Call:
## summary.ellipsefit(object = modeldirect, N = 10000, studentize = TRUE)
## Call for Original Fit:
## fel(x = ellipse1$x, y = ellipse1$y, method = "direct", period = 24,
## times = "equal")
## Ellipse Fitting Method:
## [1] "direct"
## [1] "Direct specific least squares"
##
## Bootstrapped Estimates:
## Boot.Estimate Bias Std.Error B.q0.025 B.q0.975
## b.x 0.6455 -0.013318 0.027425 0.5943 0.70208
## b.y 0.8143 -0.044875 0.046436 0.7259 0.91089
## cx -0.1004 0.008620 0.026720 -0.1508 -0.04656
## cy -0.1536 0.013048 0.032489 -0.2216 -0.09479
## retention 0.4446 0.036902 0.033999 0.3808 0.51424
## coercion 0.3111 0.024272 0.025168 0.2644 0.36354
## area 0.9056 0.050730 0.067653 0.7784 1.04401
## lag 1.8962 0.239631 0.198688 1.5244 2.30648
## split.angle 51.7255 -1.133655 1.841465 47.8951 55.17196
## hysteresis.x 0.4792 0.051312 0.042094 0.3982 0.56373
## hysteresis.y 0.5318 0.093991 0.079967 0.3907 0.70569
## ampx 0.6455 -0.013318 0.027425 0.5943 0.70208
## ampy 0.9233 -0.015553 0.034047 0.8622 0.99635
## rote.deg 56.1994 0.579308 1.686501 52.8728 59.52510
## rote.rad 0.9809 0.010111 0.029435 0.9228 1.03891
## semi.major 1.0966 -0.027721 0.037715 1.0281 1.17772
## semi.minor 0.2614 0.023362 0.021739 0.2211 0.30632
## focus.x 0.5929 -0.028488 0.033347 0.5288 0.66050
## focus.y 0.8870 -0.025134 0.039144 0.8147 0.96948
## eccentricity 0.9731 -0.009261 0.008375 0.9547 0.98732
plot(modeldirect,main="Direct Ellipse Example")
The ‘direct’ method uses different fundamental parameters than the ‘harmonic2’ method. However summary results for b.x, b.y, and retention are still available from the matrix of values produced by summary.ellipsefit.
summodel$values
## Orig.Estimate B.q0.025 B.q0.25 B.q0.5 B.q0.75
## b.x 0.63222737 0.5943469 0.6265459 0.6447086 0.6634031
## b.y 0.76946317 0.7259104 0.7827870 0.8138749 0.8448268
## cx -0.09181282 -0.1508035 -0.1184158 -0.1011185 -0.0830374
## cy -0.14053096 -0.2216152 -0.1739340 -0.1517622 -0.1315260
## retention 0.48150576 0.3807594 0.4213035 0.4435704 0.4665853
## coercion 0.33537594 0.2643730 0.2937040 0.3100667 0.3273819
## area 0.95636716 0.7784350 0.8584757 0.9039469 0.9506348
## lag 2.13580220 1.5244426 1.7584421 1.8915312 2.0259208
## split.angle 50.59185554 47.8951299 50.5349709 51.8113952 52.9906854
## hysteresis.x 0.53046729 0.3982164 0.4502675 0.4789588 0.5072140
## hysteresis.y 0.62576844 0.3906621 0.4755504 0.5269423 0.5815030
## ampx 0.63222737 0.5943469 0.6265459 0.6447086 0.6634031
## ampy 0.90770114 0.8622446 0.8996684 0.9216696 0.9442699
## rote.deg 56.77867835 52.8727878 55.0799932 56.2060066 57.3031095
## rote.rad 0.99097488 0.9228042 0.9613272 0.9809799 1.0001279
## semi.major 1.06888762 1.0280588 1.0709429 1.0946092 1.1200236
## semi.minor 0.28480180 0.2210529 0.2465134 0.2607114 0.2755807
## focus.x 0.56444608 0.5287686 0.5705548 0.5921731 0.6145695
## focus.y 0.86186385 0.8147444 0.8601544 0.8858419 0.9118110
## eccentricity 0.96384960 0.9546789 0.9679234 0.9739154 0.9790191
## B.q0.975 Std.Error Boot.Mean Bias Boot.Estimate
## b.x 0.70207780 0.027425186 0.61890941 -0.013317963 0.6455453
## b.y 0.91088889 0.046435743 0.72458857 -0.044874596 0.8143378
## cx -0.04655740 0.026720401 -0.08319326 0.008619562 -0.1004324
## cy -0.09479259 0.032489284 -0.12748254 0.013048421 -0.1535794
## retention 0.51423640 0.033999301 0.51840781 0.036902045 0.4446037
## coercion 0.36353631 0.025167675 0.35964806 0.024272120 0.3111038
## area 1.04401490 0.067652794 1.00709691 0.050729753 0.9056374
## lag 2.30647951 0.198687776 2.37543342 0.239631219 1.8961710
## split.angle 55.17196272 1.841465396 49.45820056 -1.133654981 51.7255105
## hysteresis.x 0.56372856 0.042093547 0.58177899 0.051311707 0.4791556
## hysteresis.y 0.70568551 0.079967042 0.71975951 0.093991076 0.5317774
## ampx 0.70207780 0.027425186 0.61890941 -0.013317963 0.6455453
## ampy 0.99634787 0.034047346 0.89214800 -0.015553148 0.9232543
## rote.deg 59.52509606 1.686501393 57.35798677 0.579308420 56.1993699
## rote.rad 1.03890891 0.029435002 1.00108572 0.010110839 0.9808640
## semi.major 1.17771787 0.037714645 1.04116676 -0.027720857 1.0966085
## semi.minor 0.30632344 0.021738830 0.30816401 0.023362212 0.2614396
## focus.x 0.66050124 0.033346897 0.53595842 -0.028487664 0.5929337
## focus.y 0.96947844 0.039143872 0.83673023 -0.025133624 0.8869975
## eccentricity 0.98731742 0.008374862 0.95458873 -0.009260870 0.9731105
The four plots below illustrate a comparison of the four methods for fitting an ellipse to simulated data. The data points are based on the simulated red ellipse; the fitted ellipse is in black.
set.seed(13)
par(mfrow=c(2,2))
halfellipse <- mel(method=2,cx=20,cy=25,retention=1.2,b.x=14,b.y=0.8,sd.x=1,sd.y=0.2,period=24,n.points=16,phase.angle=pi/2)
halftrueellipse <- mel(method=2,cx=20,cy=25,retention=1.2,b.x=14,b.y=0.8,phase.angle=0,period=99,n.points=100)
harmodel<-fel(halfellipse$x,halfellipse$y,method="harmonic2",period=24,times="equal")
dirmodel<-fel(halfellipse$x,halfellipse$y,method="direct",period=24,times="equal")
lmmodel<-fel(halfellipse$x,halfellipse$y,method="lm",period=24,times="equal")
nlsmodel<-fel(halfellipse$x,halfellipse$y,method="nls",period=24,times="equal",control=c(n.iter=500))
plot(harmodel,main="Harmonic2 Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(dirmodel,main="Direct Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(lmmodel,main="Linear Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(nlsmodel,main="Non-Linear Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
The geometric ellipse method used here is based on the work of Gander, Golub and Strebel, and the code used is an R translation of the Matlab code they provided. This method directly minimizes the Euclidean distances from the ellipse through Gauss-Newton minimization. Standard errors are obtainable through either the Delta Method and bootstrapping, however the use of bootstrapping through summary.ellipsefit is discouraged on these ellipses as the geometric method is extremely computationally expensive. The “geometric” method works best when sd.x=sd.y, and it is important to check for false convergence. One way to check for false convergence is to examine the plot after fitting the data.
set.seed(101)
ellip <- mel(rote.deg=45,semi.major=5,semi.minor=3,n.points=13,sd.x=0.4,sd.y=0.4)
true.ellip <- mel(rote.deg=45,semi.major=5,semi.minor=3,n.points=100,period=100)
ellip.geometric <- fel(ellip$x,ellip$y,method="geometric")
ellip.geometric$values
## cx cy rote.rad semi.major semi.minor rote.deg
## 31.6319099 39.0219604 0.8018498 4.9802104 2.4089135 45.9426122
## phase.angle area lag coercion b.x b.y
## 5.9882690 37.6893605 1.8648117 3.0359536 3.8717128 2.4523187
## retention split.angle hysteresis.x hysteresis.y ampx ampy
## 3.0986017 32.3499135 0.7841371 1.2635396 3.8717128 3.9516072
## focus.x focus.y eccentricity n
## 3.0310553 3.1324647 0.8752354 13.0000000
plot(ellip.geometric,main="Geometric Model")
lines(true.ellip$x,true.ellip$y,col="red")
The function summary.ellipsefit bootstraps the x and y residuals of a fitted ellipse separately to produce standard errors and less biased estimates of ellipse parameters. These residuals are easy to obtain using the ‘harmonic2’ model which gives fitted points when fitting the ellipse, but somewhat more difficult to obtain from the other methods which do not use time as a variable in fitting the model and therefore cannot place observations on the ellipse. The function fel, therefore, gives two methods for producing x and y residuals using these methods. If times=“unknown”, fitted values are taken to be the points on the ellipse closest to their realized values. If times=“equal” or a numeric vector and the period of the ellipse is known, then the distances between points on the ellipse are taken as given and only the starting point of the ellipse is chosen to minimize the sum of squared distances between fitted and realized values. If times are available, it is always better to give them, as the residuals given by times=‘unknown’ will lead to standard errors for ellipse parameters that are biased downwards. If times really are unknown, a good alternative is to use the delta standard errors from the function delta.error which is currently available for every method except the direct.
In addition, residuals can be studentized within the summary.ellipsefit function by keeping studentize=TRUE, which is the default. Simulations suggest that studentization improves 95% bootstrap coverage intervals for all four methods.
The value N gives the number of bootstrap replicates, its default is 1000 which may be low in some situations (Efron 1979). In each replication, residuals are resampled with replacement and added to the original fitted values produced by fel. The simulated ellipse is then refit using the original method and parameter estimates are obtained. The standard deviations of these estimates are then used to give parameter standard errors, and less biased parameter estimates are obtained by subtracting the estimated bias produced by the method, mean(bootstrap estimates) - (original estimate), from the original estimate. Note, if reproducible results are desired use set.seed() command.
The fitted black ellipses from above are then bootstrapped to reduce bias.
par(mfrow=c(2,2))
harsummodel<-summary(harmodel,N=1000,studentize=TRUE)
dirsummodel<-summary(dirmodel,N=1000,studentize=TRUE)
lmsummodel<-summary(lmmodel,N=1000,studentize=TRUE)
nlssummodel<-summary(nlsmodel,N=1000,studentize=TRUE)
## Warning in nlssummary(object, N = N, studentize = studentize, center = center,
## : The function nls failed to converge 114 times.
plot(harsummodel,main="Bootstrapped Harmonic2 Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(dirsummodel,main="Bootstrapped Direct Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(lmsummodel,main="Bootstrapped Lm Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
plot(nlssummodel,main="Bootstrapped Nls Model",xlim=c(5,34),ylim=c(23.4,26.9))
lines(halftrueellipse$x,halftrueellipse$y,col="red")
The argument subjects in the function fel can be used to fit multiple ellipses, which share the same period, at one time. In this case fel produces an object of class ellipsefitlist instead of ellipsefit, and methods for objects of class ellipsefitlist exist for the functions summary, plot, and print. Ellipses are separated by levels given by the argument subjects, which can be either a vector or a list of vectors treated as factors. Below is an example of fitting multiple ellipses using the subjects option.
data(EllipseData)
models <- fel(EllipseData$X,EllipseData$Y,method="harmonic2",subjects=EllipseData$subjects,subset=EllipseData$repeated==1)
models
## Call:
## fel(x = EllipseData$X, y = EllipseData$Y, method = "harmonic2",
## subjects = EllipseData$subjects, subset = EllipseData$repeated ==
## 1)
##
## Parameter Estimates:
## cx cy b.x b.y phase.angle retention area
## A -0.020697918 -0.019671309 0.5736708 0.7912104 -4.695827 0.3762420 0.6780785
## B 0.018284077 -0.007561673 0.5502696 0.8478535 1.522854 0.8171985 1.4127098
## C -0.004129446 -0.015904305 0.9989673 0.8180595 -4.676999 0.4144164 1.3005830
## lag coercion rote.rad rote.deg semi.major semi.minor split.angle
## A 1.695490 0.2463602 1.0103811 57.89057 1.025867 0.2103967 54.05583
## B 2.929684 0.3818710 1.2154049 69.63757 1.248931 0.3600515 57.01583
## C 1.791072 0.4514399 0.7375241 42.25702 1.319251 0.3138056 39.31422
## hysteresis.x hysteresis.y ampx ampy focus.x focus.y
## A 0.4294452 0.4755272 0.5736708 0.8761118 0.5336960 0.8504735
## B 0.6939708 0.9638440 0.5502696 1.1775691 0.4161244 1.1211743
## C 0.4519066 0.5065847 0.9989673 0.9170399 0.9483996 0.8616776
## eccentricity
## A 0.9787428
## B 0.9575438
## C 0.9712979
##
## Delta Method Standard Errors:
## b.x b.y phase.angle cx cy retention coercion area
## A 0.03591 0.03035 0.06259 0.02539 0.02146 0.03035 0.02366 0.06923
## B 0.02605 0.02935 0.04733 0.01842 0.02075 0.02935 0.02060 0.08394
## C 0.02949 0.02961 0.02952 0.02085 0.02093 0.02961 0.03171 0.10053
## lag split.angle ampx ampy rote.deg
## A 0.13231 0.03489 0.03591 0.03035 3.291
## B 0.09519 0.02678 0.02605 0.02935 1.440
## C 0.12331 0.02289 0.02949 0.02961 2.554
summodels<-summary(models)
summodels
## Summary Call:
## summary.ellipsefitlist(object = models)
## Call for Original Fit:
## FUN(x = data[x, , drop = FALSE], method = ..1, period = ..2,
## times = ..3, na.action = ..4, control = ..5)
## Ellipse Fitting Method:
## [1] "harmonic2"
## [1] "Two step simple harmonic least squares"
##
## Bootstrapped Value Estimates:
## Parameter Subject Boot.Estimate Bias Std.Error B.q0.025 B.q0.975
## 1 b.x A 0.569236 4.434e-03 0.038884 0.49460 0.64597
## 2 b.y A 0.792499 -1.289e-03 0.040916 0.70989 0.87014
## 4 cx A -0.020675 -2.271e-05 0.026755 -0.07395 0.03116
## 5 cy A -0.019916 2.446e-04 0.022992 -0.06406 0.02526
## 6 retention A 0.372032 4.210e-03 0.062839 0.25021 0.49030
## 7 coercion A 0.242503 3.857e-03 0.044269 0.15520 0.32458
## 8 area A 0.664797 1.328e-02 0.125425 0.41653 0.89783
## 9 lag A 1.676637 1.885e-02 0.295604 1.10686 2.25441
## 11 hysteresis.x A 0.426291 3.155e-03 0.069492 0.28887 0.55839
## 12 hysteresis.y A 0.465837 9.690e-03 0.096722 0.28957 0.66486
## 13 ampx A 0.569236 4.434e-03 0.038884 0.49460 0.64597
## 14 ampy A 0.872831 3.281e-03 0.031733 0.80895 0.93649
## 15 rote.deg A 57.930050 -3.948e-02 2.169541 53.66424 62.29363
## 17 semi.major A 1.021255 4.612e-03 0.033952 0.95806 1.08774
## 18 semi.minor A 0.207282 3.115e-03 0.037802 0.13302 0.28014
## 19 focus.x A 0.531558 2.138e-03 0.039807 0.45401 0.61106
## 20 focus.y A 0.848770 1.704e-03 0.033430 0.78204 0.91402
## 21 eccentricity A 0.979963 -1.220e-03 0.008050 0.96325 0.99336
## 22 b.x B 0.550712 -4.429e-04 0.029681 0.49414 0.60930
## 23 b.y B 0.848438 -5.847e-04 0.052508 0.74334 0.94439
## 25 cx B 0.018561 -2.770e-04 0.019363 -0.01961 0.05648
## 26 cy B -0.007236 -3.261e-04 0.022550 -0.05266 0.03535
## 27 retention B 0.817529 -3.303e-04 0.051826 0.71017 0.91720
## 28 coercion B 0.382741 -8.702e-04 0.029875 0.32677 0.44065
## 29 area B 1.414470 -1.760e-03 0.116725 1.18989 1.63911
## 30 lag B 2.928889 7.948e-04 0.215903 2.50995 3.35318
## 32 hysteresis.x B 0.694929 -9.583e-04 0.040589 0.61307 0.77156
## 33 hysteresis.y B 0.957383 6.461e-03 0.111152 0.75921 1.19251
## 34 ampx B 0.550712 -4.429e-04 0.029681 0.49414 0.60930
## 35 ampy B 1.176342 1.227e-03 0.031878 1.11176 1.23469
## 36 rote.deg B 69.574402 6.317e-02 1.531632 66.45552 72.38777
## 38 semi.major B 1.247706 1.225e-03 0.032118 1.18409 1.30738
## 39 semi.minor B 0.360863 -8.120e-04 0.028151 0.30893 0.41574
## 40 focus.x B 0.417134 -1.010e-03 0.032025 0.35698 0.48190
## 41 focus.y B 1.120053 1.121e-03 0.034426 1.05041 1.18484
## 42 eccentricity B 0.957636 -9.246e-05 0.007152 0.94226 0.97065
## 43 b.x C 1.001098 -2.131e-03 0.031755 0.93943 1.06196
## 44 b.y C 0.817926 1.335e-04 0.036215 0.74615 0.89035
## 46 cx C -0.003819 -3.105e-04 0.022687 -0.04672 0.03763
## 47 cy C -0.015672 -2.323e-04 0.022672 -0.06243 0.02982
## 48 retention C 0.414937 -5.201e-04 0.041501 0.33194 0.48833
## 49 coercion C 0.453418 -1.978e-03 0.044646 0.36512 0.53714
## 50 area C 1.305200 -4.617e-03 0.134136 1.03541 1.55560
## 51 lag C 1.792962 -1.890e-03 0.184199 1.43449 2.12732
## 53 hysteresis.x C 0.452871 -9.648e-04 0.043015 0.36779 0.52967
## 54 hysteresis.y C 0.505725 8.592e-04 0.060755 0.39140 0.61959
## 55 ampx C 1.001098 -2.131e-03 0.031755 0.93943 1.06196
## 56 ampy C 0.916091 9.485e-04 0.032849 0.84699 0.98001
## 57 rote.deg C 42.159557 9.746e-02 1.565066 39.17300 45.15131
## 59 semi.major C 1.319980 -7.289e-04 0.032127 1.25596 1.38633
## 60 semi.minor C 0.314696 -8.908e-04 0.031998 0.25045 0.37332
## 61 focus.x C 0.950973 -2.573e-03 0.034146 0.88342 1.01576
## 62 focus.y C 0.861033 6.443e-04 0.035274 0.78846 0.93101
## 63 eccentricity C 0.971559 -2.608e-04 0.006211 0.95942 0.98261
plot(summodels,main="Fitting Multiple Ellipses Simultaneously")
## write.table(models$Estimates,"file_name.txt") and
## write.table(summodels$Boot.Estimates,"file_name.txt")
The function floop can be used to fit hysteresis loops with specific values of n and m as arguments to floop. Below is an example of a hysteresis loop with n=5, m=3.
loop <- mloop(n=5, m=3,sd.x=0.02,sd.y=0.02)
fitloop <- floop(loop$x,loop$y,n=5, m=3,period=24,times="equal")
## Warning in floop(loop$x, loop$y, n = 5, m = 3, period = 24, times = "equal"):
## hysteresis.x and coercion only available if m=n
fitloop$Estimates
## n m b.x b.y
## 5.000000000 3.000000000 0.599422931 0.799635941
## phase.angle cx cy retention
## 0.012909411 -0.001077111 -0.007705282 0.205051341
## coercion area lag beta.split.angle
## NA 0.289605698 0.958833524 0.000000000
## hysteresis.x hysteresis.y
## NA 0.256430871
plot(fitloop,main="Fitted Hysteresis Loop")
summary(fitloop)
## Summary Call:
## summary.fittedloop(object = fitloop)
## Call for Original Fit:
## floop(x = loop$x, y = loop$y, n = 5, m = 3, times = "equal",
## period = 24)
##
## Bootstrapped Estimates:
## Boot.Estimate Bias Std.Error B.q0.025 B.q0.975
## n 5.000000 0.000e+00 0.000000 5.000000 5.000e+00
## m 3.000000 0.000e+00 0.000000 3.000000 3.000e+00
## b.x 0.599290 1.329e-04 0.005540 0.588436 6.104e-01
## b.y 0.799588 4.843e-05 0.007572 0.784037 8.146e-01
## phase.angle 0.025782 -1.287e-02 0.009265 0.008167 4.476e-02
## cx -0.001263 1.860e-04 0.004127 -0.009552 6.838e-03
## cy -0.007670 -3.496e-05 0.003743 -0.014682 -9.934e-05
## retention 0.205157 -1.053e-04 0.007242 0.191403 2.192e-01
## coercion NA NA NA NA NA
## area 0.289689 -8.349e-05 0.010596 0.269101 3.096e-01
## lag 0.959336 -5.025e-04 0.034190 0.892984 1.030e+00
## beta.split.angle 0.000000 0.000e+00 0.000000 0.000000 0.000e+00
## hysteresis.x NA NA NA NA NA
## hysteresis.y 0.256549 -1.183e-04 0.009543 0.238095 2.764e-01
NIFA MRF 25-008/W-2173 Impacts of Stress Factors on Performance, Health, and Well Being of Farm Animals
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.