The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
library(imcExperiment)
showClass("imcExperiment")
## Class "imcExperiment" [package "imcExperiment"]
##
## Slots:
##
## Name: coordinates cellIntensity
## Class: matrix matrix
##
## Name: neighborHood network
## Class: matrix data.frame
##
## Name: distance morphology
## Class: matrix matrix
##
## Name: uniqueLabel int_elementMetadata
## Class: character DataFrame
##
## Name: int_colData int_metadata
## Class: DataFrame list
##
## Name: rowRanges colData
## Class: GenomicRanges_OR_GRangesList DataFrame
##
## Name: assays NAMES
## Class: Assays_OR_NULL character_OR_NULL
##
## Name: elementMetadata metadata
## Class: DataFrame list
##
## Extends:
## Class "SingleCellExperiment", directly
## Class "RangedSummarizedExperiment", by class "SingleCellExperiment", distance 2
## Class "SummarizedExperiment", by class "SingleCellExperiment", distance 3
## Class "RectangularData", by class "SingleCellExperiment", distance 4
## Class "Vector", by class "SingleCellExperiment", distance 4
## Class "Annotated", by class "SingleCellExperiment", distance 5
## Class "vector_OR_Vector", by class "SingleCellExperiment", distance 5
#10 cells with 10 proteins
# 10 neighbors
# and square distance matrix
# note that for SCE objects the columns are the cells, and rows are proteins
<-imcExperiment(cellIntensity=matrix(1,nrow=10,ncol=10),
xcoordinates=matrix(1,nrow=10,ncol=2),
neighborHood=matrix(1,nrow=10,ncol=10),
network=data.frame(matrix(1,nrow=10,ncol=10)),
distance=matrix(1,nrow=10,ncol=10),
morphology=matrix(1,nrow=10,ncol=10),
uniqueLabel=paste0("A",seq_len(10)),
panel=letters[1:10],
ROIID=data.frame(ROIID=rep("A",10)))
#7 cells with 10 proteins
# but the spatial information is 10 rows and this will fail to build.
#x<-imcExperiment(cellIntensity=matrix(1,nrow=7,ncol=10),
# coordinates=matrix(1,nrow=10,ncol=2),
# neighborHood=matrix(1,nrow=10,ncol=20),
# network=matrix(1,nrow=10,ncol=3),
# distance=matrix(1,nrow=10,ncol=2),
# uniqueLabel=rep("A",10),
# ROIID=data.frame(ROIID=rep("A",10)))
#get cellintensities
cellIntensity(x)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
#set intensities
<-matrix(rnorm(100,2,5),nrow=10,ncol=10)
newInrownames(newIn)<-rownames(x)
colnames(newIn)<-colnames(x)
cellIntensity(x)<-newIn
cellIntensity(x)==newIn
## A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
## a TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## b TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## c TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## d TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## e TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## f TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## g TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## h TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## i TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## j TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
# if we want to store both the raw and normalized values in assays we can.
assays(x,withDimnames = FALSE)$raw<-matrix(1,nrow=10,ncol=10)
#store the normalized values.
cellIntensity(x)<-asinh(counts(x)/0.5)
all(cellIntensity(x)==asinh(assays(x)$counts/0.5))
## [1] TRUE
x
## class: imcExperiment
## dim: 10 10
## metadata(0):
## assays(2): counts raw
## rownames(10): a b ... i j
## rowData names(0):
## colnames(10): A1 A2 ... A9 A10
## colData names(1): ROIID
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## access the coordinates
getCoordinates(x)
## [,1] [,2]
## [1,] 1 1
## [2,] 1 1
## [3,] 1 1
## [4,] 1 1
## [5,] 1 1
## [6,] 1 1
## [7,] 1 1
## [8,] 1 1
## [9,] 1 1
## [10,] 1 1
getCoordinates(x)<-matrix(rnorm(20,0,10),nrow=10,ncol=2)
head( getCoordinates(x))
## [,1] [,2]
## [1,] 1.138630 0.4920486
## [2,] -7.483197 14.0072048
## [3,] -2.995988 5.7263834
## [4,] -3.952030 -11.4399828
## [5,] 8.534859 -2.8095482
## [6,] 9.879779 19.3120798
## access the neighborhood profile. Note each row must equal the number of cells, but the columns can be extended depending on the radius of interactions.
## access the coordinates
getNeighborhood(x)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
getNeighborhood(x)<-matrix(rnorm(100,1,5),nrow=10,ncol=10)
head( getNeighborhood(x))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -11.5292016 5.750663 5.32795370 -8.018236 1.701827 -5.041385 4.7460738
## [2,] -1.1284688 5.185412 -0.12147623 -1.805766 4.498192 7.648025 0.6660934
## [3,] -0.2312129 6.175255 -4.87813785 10.450752 -1.764999 1.617683 -0.3658961
## [4,] -6.6399166 -7.081547 5.61946737 7.130634 4.629363 6.306020 4.5311604
## [5,] 7.9826941 6.890117 0.01332724 6.049404 1.661246 -2.705478 -7.2621050
## [6,] 3.4256881 -1.114269 -7.27957485 4.411063 2.104813 10.298950 -1.4588797
## [,8] [,9] [,10]
## [1,] 1.4981864 8.2157026 -4.0862024
## [2,] -6.2570109 3.2871688 -6.7956895
## [3,] -1.6710766 4.0130912 -1.6708544
## [4,] -0.3772099 -1.6926917 -0.7368132
## [5,] -4.9718817 -4.1329155 4.3349482
## [6,] 7.8650851 0.8307328 -0.4697563
## get the distance usually a square matrix, or can be just first nearest etc.
getDistance(x)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
getDistance(x)<-matrix(rnorm(100,1,5),nrow=10,ncol=10)
head(getDistance(x))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -4.4459580 0.3832962 1.2861954 5.191198 8.1144338 1.250347 3.5746833
## [2,] 2.2501458 8.5357020 6.0879762 -1.389698 -0.7572171 1.056745 3.4762454
## [3,] 1.8648350 7.6683573 -6.1207535 8.613386 -3.3720330 -1.958730 3.3212437
## [4,] 3.6676806 0.8794159 5.7258095 -3.174093 2.0034287 7.917606 3.1580990
## [5,] -0.1038772 3.1644572 0.1525853 -5.029461 6.0548022 3.773487 -8.7464480
## [6,] 3.9208435 8.4196328 2.5519046 -3.191540 8.7255777 -5.454160 -0.1319931
## [,8] [,9] [,10]
## [1,] -1.414093 6.9717400 0.4301284
## [2,] 5.167939 4.3821819 4.1317587
## [3,] 8.287247 1.9860126 -10.6450490
## [4,] -4.710048 0.4533308 8.1478340
## [5,] -5.732384 3.8630923 5.3916885
## [6,] -4.847652 2.3099469 6.9436779
# get morphological features
getMorphology(x)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
## [7,] 1 1 1 1 1 1 1 1 1 1
## [8,] 1 1 1 1 1 1 1 1 1 1
## [9,] 1 1 1 1 1 1 1 1 1 1
## [10,] 1 1 1 1 1 1 1 1 1 1
getMorphology(x)<-matrix(rnorm(100,1,5),nrow=10,ncol=60)
head(getMorphology(x))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] -0.2602892 -2.873465 -1.1884496 -8.110879 7.1433864 -3.124403 0.6445156
## [2,] 6.6712063 4.358327 0.8852602 -1.839347 4.7459084 2.049456 3.0144223
## [3,] 0.4508546 7.471209 -3.1749765 -4.185419 9.9250273 2.718686 4.2543621
## [4,] 5.3070444 -1.126719 -2.4471718 -6.437787 2.1392430 3.716662 9.4709743
## [5,] 0.2663402 1.076424 -2.7057904 -1.810752 -0.6675042 2.135795 -6.5746575
## [6,] -0.9224336 11.654316 2.2870520 4.787939 0.4979738 -4.675196 -6.1942677
## [,8] [,9] [,10] [,11] [,12] [,13] [,14]
## [1,] -0.1020808 0.5043882 -2.792838 -0.2602892 -2.873465 -1.1884496 -8.110879
## [2,] -3.7028341 2.9473449 -1.527435 6.6712063 4.358327 0.8852602 -1.839347
## [3,] 2.5449114 1.8542034 2.661986 0.4508546 7.471209 -3.1749765 -4.185419
## [4,] 8.8134069 7.8361904 3.072036 5.3070444 -1.126719 -2.4471718 -6.437787
## [5,] 16.7918222 -1.0880037 3.122839 0.2663402 1.076424 -2.7057904 -1.810752
## [6,] -2.0700062 -1.1436743 3.858231 -0.9224336 11.654316 2.2870520 4.787939
## [,15] [,16] [,17] [,18] [,19] [,20] [,21]
## [1,] 7.1433864 -3.124403 0.6445156 -0.1020808 0.5043882 -2.792838 -0.2602892
## [2,] 4.7459084 2.049456 3.0144223 -3.7028341 2.9473449 -1.527435 6.6712063
## [3,] 9.9250273 2.718686 4.2543621 2.5449114 1.8542034 2.661986 0.4508546
## [4,] 2.1392430 3.716662 9.4709743 8.8134069 7.8361904 3.072036 5.3070444
## [5,] -0.6675042 2.135795 -6.5746575 16.7918222 -1.0880037 3.122839 0.2663402
## [6,] 0.4979738 -4.675196 -6.1942677 -2.0700062 -1.1436743 3.858231 -0.9224336
## [,22] [,23] [,24] [,25] [,26] [,27] [,28]
## [1,] -2.873465 -1.1884496 -8.110879 7.1433864 -3.124403 0.6445156 -0.1020808
## [2,] 4.358327 0.8852602 -1.839347 4.7459084 2.049456 3.0144223 -3.7028341
## [3,] 7.471209 -3.1749765 -4.185419 9.9250273 2.718686 4.2543621 2.5449114
## [4,] -1.126719 -2.4471718 -6.437787 2.1392430 3.716662 9.4709743 8.8134069
## [5,] 1.076424 -2.7057904 -1.810752 -0.6675042 2.135795 -6.5746575 16.7918222
## [6,] 11.654316 2.2870520 4.787939 0.4979738 -4.675196 -6.1942677 -2.0700062
## [,29] [,30] [,31] [,32] [,33] [,34] [,35]
## [1,] 0.5043882 -2.792838 -0.2602892 -2.873465 -1.1884496 -8.110879 7.1433864
## [2,] 2.9473449 -1.527435 6.6712063 4.358327 0.8852602 -1.839347 4.7459084
## [3,] 1.8542034 2.661986 0.4508546 7.471209 -3.1749765 -4.185419 9.9250273
## [4,] 7.8361904 3.072036 5.3070444 -1.126719 -2.4471718 -6.437787 2.1392430
## [5,] -1.0880037 3.122839 0.2663402 1.076424 -2.7057904 -1.810752 -0.6675042
## [6,] -1.1436743 3.858231 -0.9224336 11.654316 2.2870520 4.787939 0.4979738
## [,36] [,37] [,38] [,39] [,40] [,41] [,42]
## [1,] -3.124403 0.6445156 -0.1020808 0.5043882 -2.792838 -0.2602892 -2.873465
## [2,] 2.049456 3.0144223 -3.7028341 2.9473449 -1.527435 6.6712063 4.358327
## [3,] 2.718686 4.2543621 2.5449114 1.8542034 2.661986 0.4508546 7.471209
## [4,] 3.716662 9.4709743 8.8134069 7.8361904 3.072036 5.3070444 -1.126719
## [5,] 2.135795 -6.5746575 16.7918222 -1.0880037 3.122839 0.2663402 1.076424
## [6,] -4.675196 -6.1942677 -2.0700062 -1.1436743 3.858231 -0.9224336 11.654316
## [,43] [,44] [,45] [,46] [,47] [,48] [,49]
## [1,] -1.1884496 -8.110879 7.1433864 -3.124403 0.6445156 -0.1020808 0.5043882
## [2,] 0.8852602 -1.839347 4.7459084 2.049456 3.0144223 -3.7028341 2.9473449
## [3,] -3.1749765 -4.185419 9.9250273 2.718686 4.2543621 2.5449114 1.8542034
## [4,] -2.4471718 -6.437787 2.1392430 3.716662 9.4709743 8.8134069 7.8361904
## [5,] -2.7057904 -1.810752 -0.6675042 2.135795 -6.5746575 16.7918222 -1.0880037
## [6,] 2.2870520 4.787939 0.4979738 -4.675196 -6.1942677 -2.0700062 -1.1436743
## [,50] [,51] [,52] [,53] [,54] [,55] [,56]
## [1,] -2.792838 -0.2602892 -2.873465 -1.1884496 -8.110879 7.1433864 -3.124403
## [2,] -1.527435 6.6712063 4.358327 0.8852602 -1.839347 4.7459084 2.049456
## [3,] 2.661986 0.4508546 7.471209 -3.1749765 -4.185419 9.9250273 2.718686
## [4,] 3.072036 5.3070444 -1.126719 -2.4471718 -6.437787 2.1392430 3.716662
## [5,] 3.122839 0.2663402 1.076424 -2.7057904 -1.810752 -0.6675042 2.135795
## [6,] 3.858231 -0.9224336 11.654316 2.2870520 4.787939 0.4979738 -4.675196
## [,57] [,58] [,59] [,60]
## [1,] 0.6445156 -0.1020808 0.5043882 -2.792838
## [2,] 3.0144223 -3.7028341 2.9473449 -1.527435
## [3,] 4.2543621 2.5449114 1.8542034 2.661986
## [4,] 9.4709743 8.8134069 7.8361904 3.072036
## [5,] -6.5746575 16.7918222 -1.0880037 3.122839
## [6,] -6.1942677 -2.0700062 -1.1436743 3.858231
## for each cell we can obtain the ROI that it belongs to
rowData(x)
## DataFrame with 10 rows and 0 columns
## if we want to add patient features to each ROI we can
<-data.frame(ROIID=factor(rep("A",10)),treatment=factor(rep('none',10)))
metascolData(x)<-DataFrame(metas)
##other slots for covariates
metadata(x)$experiment<-'test'
metadata(x)
## $experiment
## [1] "test"
### load the data from package.
library(imcExperiment)
##load the data 1000 cells from IMC experiment.
data(data)
dim(data)
## [1] 1000 62
##output from histoCAT to R
<-data[,3:36]
expr<-percentilenormalize(data=expr,percentile=0.99)
normExp<-as.matrix(normExp)
normExp
##spatial component
<-(data[,c("X_position","Y_position")])
spatial<-as.matrix(spatial)
spatial##uniqueLabel
<-paste0(data[,"ImageId"],"_",data[,"CellId"])
uniqueLabel
<-data[,grepl("Phenograph",colnames(data))]
phenotypes<-as.matrix(data[,c("Area","Eccentricity",
morph"Solidity",
"Extent",
"Perimeter")])
<-imcExperiment(cellIntensity=t(normExp),
xcoordinates=spatial,
neighborHood=as.matrix(data[,grepl("neighbour_",colnames(data))]),
network=phenotypes,
distance=matrix(1,nrow=nrow(data),ncol=10),
morphology=morph,
panel=colnames(normExp),
uniqueLabel=paste0(data$ImageId,"_",data$CellId),
ROIID=data.frame(ROIID=data$ImageId))
## explore the container.
dim(assay(x))
## [1] 34 1000
colData(x)$treatment<-DataFrame(treatment=rep('none',1000))
head(colData(x))
## DataFrame with 6 rows and 2 columns
## ROIID treatment
## <integer> <DataFrame>
## 274864_1 274864 none
## 274864_2 274864 none
## 274864_3 274864 none
## 274864_4 274864 none
## 274864_5 274864 none
## 274864_6 274864 none
head( colnames(x))
## [1] "274864_1" "274864_2" "274864_3" "274864_4" "274864_5" "274864_6"
rownames(x)
## [1] "marker1" "marker2" "marker3" "marker4" "marker5" "marker6"
## [7] "marker7" "marker8" "marker9" "marker10" "marker11" "marker12"
## [13] "marker13" "marker14" "marker15" "marker16" "marker17" "marker18"
## [19] "marker19" "marker20" "marker21" "marker22" "marker23" "marker24"
## [25] "marker25" "marker26" "marker27" "marker28" "marker29" "marker30"
## [31] "marker31" "marker32" "marker33" "marker34"
## Intensity
all(t(cellIntensity(x))==normExp)
## [1] TRUE
head(t(cellIntensity(x)))
## marker1 marker2 marker3 marker4 marker5 marker6 marker7
## 1 0.4656571 0.2736824 0.7237669 0.5204605 0.6330375 0.45935533 0.2857143
## 2 0.3487101 0.2897530 0.3958101 0.3548617 0.5588399 0.11483883 0.5000000
## 3 0.8883986 0.7622286 0.8866145 0.4873408 0.2400462 0.18374213 0.0000000
## 4 0.3963552 0.1451175 0.2714126 1.0000000 0.2100260 0.19686657 0.0000000
## 5 0.5407341 0.2522549 0.4221974 0.1064634 0.8991254 0.07655922 0.3333333
## 6 1.0000000 0.7622286 0.0000000 0.7854187 0.2018387 0.82683960 0.8000000
## marker8 marker9 marker10 marker11 marker12 marker13 marker14
## 1 0.4237137 0.1981346 0.5895631 0.38423632 0.5596034 1.00000000 0.5421737
## 2 0.2118568 0.1812504 0.3699262 0.04531335 0.1284526 0.04016094 0.1667561
## 3 0.4237137 0.6934055 0.2150245 0.69305332 1.0000000 0.11646341 0.4103197
## 4 0.7263663 0.3632249 0.1866203 1.00000000 0.9999276 0.02467097 0.9450608
## 5 0.3530947 0.1155895 0.8496593 0.55169689 0.1819642 0.06291782 0.1453909
## 6 0.2542282 0.2731756 0.4462211 0.21726828 0.6036358 0.05220870 0.1539370
## marker15 marker16 marker17 marker18 marker19 marker20 marker21
## 1 0.46990599 0.0952381 0.4987356 0.5269829 0.04774145 0.5735263 0.7197223
## 2 0.15883470 0.1666667 0.4851215 0.4321421 0.34528973 0.3484509 0.4443348
## 3 0.45147213 0.2666667 0.6154904 0.6206074 0.30741995 0.5060037 0.8448015
## 4 0.07050581 0.5714286 0.4715074 0.4803021 0.04774145 0.4609886 0.1938211
## 5 0.60815990 0.3333333 0.3834694 0.3128651 0.12438267 0.2171569 0.4567717
## 6 0.58665373 0.4000000 1.0000000 1.0000000 0.08020126 0.6635565 0.4070243
## marker22 marker23 marker24 marker25 marker26 marker27 marker28
## 1 0.4735184 0.9999835 0.12229278 0.2651672 0.19823739 1.0000000 0.2379700
## 2 0.3429377 0.4963629 0.08592210 0.3093618 0.06938309 0.1036510 0.2082237
## 3 0.4343442 0.6072488 0.40161962 0.3093618 0.11101294 1.0000000 0.6663160
## 4 0.4735184 0.8192498 0.04747309 0.0000000 0.23788486 0.9639418 0.0000000
## 5 0.4191098 0.3712448 0.22898012 0.3609221 0.00000000 0.4915438 0.2776317
## 6 0.7085638 0.1612178 0.33178791 0.0000000 0.49955821 1.0000000 0.0000000
## marker29 marker30 marker31 marker32 marker33 marker34
## 1 0.5826594 0.4963881 0.4285714 0.57132469 0.32432082 0.7448313
## 2 0.1140364 0.3285300 0.1250000 0.53626613 0.44897580 0.2375474
## 3 0.9637037 0.6810320 0.5000000 0.37811307 0.02758118 0.5500343
## 4 1.0000000 0.8740688 0.8571429 0.13504038 0.07298397 0.9535425
## 5 0.4187694 0.6712403 0.3333333 0.07271405 0.44188161 0.2307836
## 6 0.3614079 0.9747837 0.3000000 1.00000000 0.54971323 0.5500343
##coordinate
all(getCoordinates(x)==spatial)
## [1] TRUE
head(getCoordinates(x))
## X_position Y_position
## 1 508.0000 3.000000
## 2 672.1667 3.000000
## 3 154.2000 4.200000
## 4 538.5714 4.857143
## 5 913.2778 3.444444
## 6 1200.0000 4.200000
#neighbor attraction data form histoCAT
all(getNeighborhood(x)==as.matrix(data[,grepl("neighbour_",colnames(data))]))
## [1] TRUE
head(getNeighborhood((x)))
## neighbour_4_CellId1 neighbour_4_CellId2 neighbour_4_CellId3
## 1 36 168 0
## 2 144 0 0
## 3 0 0 0
## 4 67 92 0
## 5 13 97 249
## 6 135 0 0
## neighbour_4_CellId4 neighbour_4_CellId5 neighbour_4_CellId6
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## neighbour_4_CellId7 neighbour_4_CellId8 neighbour_4_CellId9
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 0 0
## 6 0 0 0
## neighbour_4_CellId10
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
##phenotype cluster ID
head(getNetwork(x))
## (network)
## 1 1
## 2 1
## 3 4
## 4 4
## 5 1
## 6 1
all(getNetwork(x)==phenotypes)
## [1] TRUE
###distance calculations
head(getDistance(x))
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1
## [5,] 1 1 1 1 1 1 1 1 1 1
## [6,] 1 1 1 1 1 1 1 1 1 1
##morphology
all(getMorphology(x)==morph)
## [1] TRUE
head(getMorphology(x))
## Area Eccentricity Solidity Extent Perimeter
## 1 21 0.6956573 0.9545455 0.8400000 13.844
## 2 24 0.8034622 0.9230769 0.6666667 16.565
## 3 15 0.9014174 1.0000000 0.7142857 12.918
## 4 7 0.8717717 0.8750000 0.5833333 7.683
## 5 18 0.9593719 0.7500000 0.3214286 19.766
## 6 5 0.7437865 1.0000000 0.5555556 5.814
##uniqueLabel
head(getLabel(x))
## [1] "274864_1" "274864_2" "274864_3" "274864_4" "274864_5" "274864_6"
all(getLabel(x)==paste0(data$ImageId,"_",data$CellId) )
## [1] TRUE
### inherited accessor.
<- prcomp(t(counts(x)), rank=50)
pca_data <-data.frame(tsne.x=data$tSNE4148542692_1,tsne.y=data$tSNE4148542692_2,row.names=colnames(x))
tsDat
reducedDims(x)<-list(PCA=pca_data$x,TSNE=tsDat)
x
## class: imcExperiment
## dim: 34 1000
## metadata(0):
## assays(1): counts
## rownames(34): marker1 marker2 ... marker33 marker34
## rowData names(0):
## colnames(1000): 274864_1 274864_2 ... 274864_999 274864_1000
## colData names(2): ROIID treatment
## reducedDimNames(2): PCA TSNE
## mainExpName: NULL
## altExpNames(0):
reducedDimNames(x)
## [1] "PCA" "TSNE"
dim(reducedDims(x)$PCA)
## [1] 1000 34
dim(reducedDims(x)$TSNE)
## [1] 1000 2
<-x
imc<-NULL x
### create phenotypes via Rphenograph
##run phenograph
library(Rphenograph)
library(igraph)
<-Rphenograph(t(cellIntensity(imc)),k=35)
phenos<-as.numeric(igraph::membership(phenos[[2]]))
pheno.labelsgetNetwork(imc)<-data.frame(cell_clustering=pheno.labels)
head( getNetwork(imc))
##plot phenograph
#plot_clustering_heatmap_wrapper(myExperiment=imc)
### reading in a directory of histoCAT csv files.
##need to reconstruct the fold revised IMC data.
##merges a folder full of histoCAT csv files.
# use morphology and the 1-10 neighbors.
<-NULL
dataSetfor(i in c("case8.csv","case5.csv")){
message(i)
<- system.file("extdata", i, package="imcExperiment")
fpath <-read.csv(fpath)
case1<-colnames(case1)[grepl("Cell_",colnames(case1))]
proteins<-colnames(case1)[grepl("neighbour_",colnames(case1))][1:10]
neig<-case1[,c("ImageId","CellId","X_position","Y_position",proteins,
case1"Area",
"Eccentricity",
"Solidity",
"Extent",
"Perimeter",
neig)]<-rbind(dataSet,case1)
dataSet }
## case8.csv
## case5.csv
<-dataSet[,proteins]
expr<-percentilenormalize(data=expr,percentile=0.99)
normExp<-as.matrix(normExp)
normExpboxplot(normExp)
##spatial component
<-(dataSet[,c("X_position","Y_position")])
spatial<-as.matrix(spatial)
spatial##uniqueLabel
<-paste0(dataSet[,"ImageId"],"_",dataSet[,"CellId"])
uniqueLabel
##not yet assigned
<-matrix(0,nrow(dataSet),1)
phenotypes=data.frame(ROIID=dataSet[,"ImageId"])
ROIID<-dataSet[,c("Area",
morph"Eccentricity",
"Solidity",
"Extent",
"Perimeter")]
<-imcExperiment(cellIntensity=t(normExp),
xcoordinates=spatial,
neighborHood=as.matrix(dataSet[,grepl("neighbour_",colnames(dataSet))]),
network=phenotypes,
distance=matrix(1,nrow=nrow(dataSet),ncol=10),
morphology=morph,
panel=colnames(normExp),
uniqueLabel=uniqueLabel,
ROIID=ROIID)
x
## class: imcExperiment
## dim: 34 2000
## metadata(0):
## assays(1): counts
## rownames(34): Cell_CCR4Sm149Di_Sm149 Cell_CD15Dy164Di_Dy164 ...
## Cell_VimentinNd143Di_Nd143 Cell_pStat3Gd158Di_Gd158
## rowData names(0):
## colnames(2000): 372149_1 372149_2 ... 274864_999 274864_1000
## colData names(1): ROIID
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
#require(Rphenograph); library(igraph)
#phenos<-Rphenograph(t(cellIntensity(x)),k=35)
# pheno.labels<-as.numeric(membership(phenos[[2]]))
# getNetwork(x)<-data.frame(cell_clustering=pheno.labels)
# head(getNetwork(x))
##plot phenograph
#plot_clustering_heatmap_wrapper(myExperiment=x)
##store the ROIID in the metadata columns.
##access the unique cell labels.
tail(getLabel(x))
## [1] "274864_995" "274864_996" "274864_997" "274864_998" "274864_999"
## [6] "274864_1000"
<-subsetCase(x,372149 )
roi roi
## class: imcExperiment
## dim: 34 1000
## metadata(0):
## assays(1): counts
## rownames(34): Cell_CCR4Sm149Di_Sm149 Cell_CD15Dy164Di_Dy164 ...
## Cell_VimentinNd143Di_Nd143 Cell_pStat3Gd158Di_Gd158
## rowData names(0):
## colnames(1000): 372149_1 372149_2 ... 372149_999 372149_1000
## colData names(1): ROIID
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
table(sapply(strsplit(getLabel(roi),"_"),function(x) x[1]))
##
## 372149
## 1000
##you can append more clinical features to the columns of the sampleDat data.frame.
<-imcExperimentToHyperFrame(imcExperiment=x,phenotypeToUse = 1)
H<-function(pp=NULL,i=NULL,j=NULL){
helper<-split(pp)
ps<-nncross(ps[[i]],ps[[j]])
nnd
}## 1-NN analysis.
## compare cluster 10 to cluster 9
#eachNND<-with(H,helper(pp=point,i="10",j="8"))
## first choose 2 clusters to compare.
# sapply(eachNND,function(x) mean(x[,"dist"]))
library(CATALYST)
library(cowplot)
library(flowCore)
library(ggplot2)
library(SingleCellExperiment)
library(diffcyt)
## from IMCexperiment to SCE
<- SingleCellExperiment(x)
sceclass(sce)
## FIX ME: add the SOM algorithms for over-clustering and meta-clustering by using class inheritance.
#### for the cytof, the columns are sample info and the rows are cells. it uses the SummarizedExperiment format.
## change into a flowFrame?
## change into a daFrame (CATALYST)
#data("data")
<-DataFrame(colData(imcdata))
rd
<-data.frame(channel_name=sapply(strsplit(rownames(imcdata),"_"),function(x) x[3]),
marker_infomarker_name=rownames(imcdata),
marker_class=c(rep("type",13),
rep("state",18),
rep("none",13)))
## Switching into Summarized Experiment class.
<-SummarizedExperiment(assays=SimpleList(exprs=t(cellIntensity(imcdata))),
dserowData=rd,
colData=DataFrame(marker_info)
)stopifnot(all(colnames(dse)==marker_info$marker_name))
dse
# Transform data recommended
<- transformData(dse)
dse ## maybe look a the normalization.
# Generate clusters
<- (generateClusters(dse,meta_clustering=TRUE,meta_k=30,seed_clustering=828))
dse
## examine each cluster.
<-rowData(dse)
cluster<-data.frame(t(logcounts(imcdata)),cluster)
data#plot_matrix_heatmap_wrapper(expr=data[,rownames(imcdata)],
# cell_clustering=data$cluster_id)
#
## the assay returns matrix class! required for CATALYST.
is(assay(imcdata,'counts'),'matrix')
rownames(imcdata)
# for plot scatter to work need to set the rowData feature in a specific way.
<-sapply(strsplit(rownames(imcdata),"_"),function(x) x[3])
channel34:35]<-c("Ir1911","Ir1931")
channel[
<-sapply(strsplit(rownames(imcdata),"_"),function(x) x[2])
markerrowData(imcdata)<-DataFrame(channel_name=channel,marker_name=marker)
rownames(imcdata)<-marker
plotScatter(imcdata,rownames(imcdata)[17:18],assay='counts')
# convert to flowSet
## the warning has to do with duplicated Iridium channels.
table(colData(imcdata)$ROIID)
<- sce2fcs(imcdata, split_by = "ROIID"))
(fsimc ## now we have a flowSet.
pData(fsimc)
fsApply(fsimc,nrow)
dim(exprs(fsimc[[1]]))
exprs(fsimc[[1]])[1:5,1:5]
## set up the metadata files.
head(marker_info)
<-data.frame(group_id=colData(imcdata)$Treatment[match(pData(fsimc)$name,colData(imcdata)$ROIID)],
exper_infopatient_id=colData(imcdata)$Patient.Number[match(pData(fsimc)$name,colData(imcdata)$ROIID)],
sample_id=pData(fsimc)$name)
## create design
<-createDesignMatrix(
designcols_design=c("group_id","patient_id"))
exper_info,
##set up contrast
<-createContrast(c(0,1,0))
contrastnrow(contrast)==ncol(design)
data.frame(parameters=colnames(design),contrast)
## flowSet to DiffCyt
<-diffcyt(
out_DAd_input=fsimc,
experiment_info=exper_info,
marker_info=marker_info,
design=design,
contrast=contrast,
analysis_type = "DA",
seed_clustering = 123
)topTable(out_DA,format_vals = TRUE)
<-diffcyt(
out_DSd_input=fsimc,
experiment_info=exper_info,
marker_info=marker_info,
design=design,
contrast=contrast,
analysis_type='DS',
seed_clustering = 123,
plot=FALSE)
topTable(out_DS,format_vals = TRUE)
### from flowSet to SE.
<-prepareData(fsimc,exper_info,marker_info) d_se
library(diffcyt)
# Function to create random data (one sample)
<- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
d_random <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
d colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
d
}# Create random data (without differential signal)
set.seed(123)
<- list(
d_input sample1 = d_random(),
sample2 = d_random(),
sample3 = d_random(),
sample4 = d_random()
)<- data.frame(
experiment_info sample_id = factor(paste0("sample", 1:4)),
group_id = factor(c("group1", "group1", "group2", "group2")),
stringsAsFactors = FALSE
)<- data.frame(
marker_info channel_name = paste0("channel", sprintf("%03d", 1:20)),
marker_name = paste0("marker", sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type", 10), rep("state", 10)),
levels = c("type", "state", "none")),
stringsAsFactors = FALSE
)# Prepare data
<- prepareData(d_input, experiment_info, marker_info)
d_se # Transform data
<- transformData(d_se)
d_se # Generate clusters
<- generateClusters(d_se) d_se
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.