Package ‘important’

August 20, 2025
Title Supervised Feature Selection
Version 0.0.1

Description Interfaces for choosing important predictors in supervised
regression, classification, and censored regression models. Permuted
importance scores (Biecek and Burzykowski (2021)
<doi:10.1201/9780429027192>) can be computed for 'tidymodels' model
fits.

License MIT + file LICENSE

URL https://important.tidymodels.org/,
https://github.com/tidymodels/important

BugReports https://github.com/tidymodels/important/issues
Depends R (>=4.1.0)

Imports cli, dplyr, generics, ggplot2, hardhat (>= 1.4.1), purrr,
rlang, tibble, tidyr, tune, vctrs, withr, workflows

Suggests censored, future, future.apply, mirai, modeldata, parsnip,
recipes, spelling, survival, testthat (>= 3.0.0), yardstick

Config/Needs/website tidyverse/tidytemplate, tidymodels
Config/testthat/edition 3

Config/usethis/last-upkeep 2025-06-09

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

NeedsCompilation no

Author Max Kuhn [aut, cre] (ORCID: <https://orcid.org/0000-0003-2402-136X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Max Kuhn <max@posit.co>
Repository CRAN
Date/Publication 2025-08-20 17:10:10 UTC

https://doi.org/10.1201/9780429027192
https://important.tidymodels.org/
https://github.com/tidymodels/important
https://github.com/tidymodels/important/issues
https://orcid.org/0000-0003-2402-136X
https://ror.org/03wc8by49

2 autoplot.importance_perm

Contents
autoplot.importance_perm oo e u e e e e e 2
IMPOItanCe_Perm v v v v e et e e e e e e e 3
Index 7

autoplot.importance_perm
Visualize importance scores

Description

Visualize importance scores

Usage

S3 method for class 'importance_perm
autoplot(

object,

top = Inf,

metric = NULL,

eval_time = NULL,

type = "importance”,

std_errs = stats::gnorm(0.95),

)
Arguments

object A tibble of results from importance_perm().

top An integer for how many terms to show. To define importance when there are
multiple metrics, the rankings of predictors are computed across metrics and the
average rank is used. In the case of tied rankings, all the ties are included.

metric A character vector or NULL for which metric to plot. By default, all metrics will
be shown via facets. Possible options are the entries in .metric column of the
object.

eval_time For censored regression models, a vector of time points at which the survival
probability is estimated.

type A character value. The default is "importance"” which shows the overall signal-
to-noise ration (i.e., mean divided by standard error). Alternatively, "difference”
shows the mean difference value with standard error bounds.

std_errs The number of standard errors to plot (when type = "difference”).

Not used.

importance_perm 3

Value

A ggplot?2 object.

Examples

Pre-computed results. See code at
system.file("make_imp_example.R", package = "important")

Load the results
load(system.file("imp_examples.RData"”, package = "important”))

A classification model with two classes and highly correlated predictors.
To preprocess them, PCA feature extraction is used.

#

Let’s first view the importance in terms of the original predictor set

using 50 permutations:

imp_orig

autoplot(imp_orig, top = 10)

Now assess the importance in terms of the PCA components

imp_derv

autoplot(imp_derv)

autoplot(imp_derv, metric = "brier_class”, type = "difference")
importance_perm Compute permutation-based predictor importance
Description

importance_perm() computes model-agnostic variable importance scores by permuting individual
predictors (one at a time) and measuring how worse model performance becomes.

Usage

importance_perm(
wflow,
data,
metrics = NULL,
type = "original”,

size = 500,

times = 10,

eval_time = NULL,
event_level = "first”

4 importance_perm

Arguments
wflow A fitted workflows: :workflow().
data A data frame of the data passed to workflows: : fit.workflow(), including the
outcome and case weights (if any).
metrics A yardstick::metric_set() or NULL.
type A character string for which level of predictors to compute. A value of "original”
(default) will return values in the same representation of data. Using "derived”
will compute them for any derived features/predictors, such as dummy indicator
columns, etc.
size How many data points to predict for each permutation iteration.
times How many iterations to repeat the calculations.
eval_time For censored regression models, a vector of time points at which the survival
probability is estimated. This is only needed if a dynamic metric is used, such
as the Brier score or the area under the ROC curve.
event_level A single string. Either "first"” or "second” to specify which level of truth
to consider as the "event". This argument is only applicable when estimator =
"binary”.
Details

The function can compute importance at two different levels.
* The "original" predictors are the unaltered columns in the source data set. For example, for a
categorical predictor used with linear regression, the original predictor is the factor column.

* "Derived" predictors are the final versions given to the model. For the categorical predic-
tor example, the derived versions are the binary indicator variables produced from the factor
version.

This can make a difference when pre-processing/feature engineering is used. This can help us
understand how a predictor can be important
Importance scores are computed for each predictor (at the specified level) and each performance
metric. If no metric is specified, defaults are used:
e (Classification: yardstick: :brier_class(), yardstick::roc_auc(), and yardstick: :accuracy().
* Regression: yardstick: :rmse() and yardstick::rsq().
* Censored regression: yardstick: :brier_survival()
For censored data, importance is computed for each evaluation time (when a dynamic metric is
specified).

By default, no parallelism is used to process models in tune; you have to opt-in.

Using future to parallel process:

You should install the package and choose your flavor of parallelism using the plan function. This
allows you to specify the number of worker processes and the specific technology to use.

For example, you can use:

importance_perm 5

library(future)
plan(multisession, workers = 4)

and work will be conducted simultaneously (unless there is an exception; see the section below).
See future: :plan() for possible options other than multisession.

Using mirai to parallel process:

To configure parallel processing with mirai, use the mirai: :daemons() function. The first ar-
gument, n, determines the number of parallel workers. Using daemons (@) reverts to sequential
processing.

The arguments url and remote are used to set up and launch parallel processes over the network
for distributed computing. See mirai: :daemons() documentation for more details.

Value

A tibble with extra classes "importance_perm” and either "original_importance_perm” or "derived_importance_perm’
The columns are:

* .metric the name of the performance metric:
* predictor: the predictor
¢ n: the number of usable results (should be the same as times)

* mean: the average of the differences in performance. For each metric, larger values indicate
worse performance (i.e., higher importance).

* std_err: the standard error of the differences.
* importance: the mean divided by the standard error.

* For censored regression models, an additional .eval_time column may also be included (de-
pending on the metric requested).

Examples

if (rlang::is_installed(c("modeldata”, "recipes”, "workflows”, "parsnip"))) {
library(modeldata)
library(recipes)
library(workflows)
library(dplyr)
library(parsnip)

set.seed(12)

dat_tr <-
sim_logistic(250, ~ .1 + 2 * A -3 *xB + 1 % A *B, corr = .7) |>
dplyr::bind_cols(sim_noise (250, num_vars = 10))

rec <-
recipe(class ~ ., data = dat_tr) |>
step_interact(~ A:B) |>
step_normalize(all_numeric_predictors()) |>
step_pca(contains(”"noise"), num_comp = 5)

1r_wflow <- workflow(rec, logistic_reg())

1r_fit <- fit(1r_wflow, dat_tr)

set.seed(39)

orig_res <- importance_perm(lr_fit, data = dat_tr, type = "original”,
size = 100, times = 3)

orig_res

set.seed(39)

deriv_res <- importance_perm(lr_fit, data = dat_tr, type = "derived"”,
size = 100, times = 3)

deriv_res

importance_perm

Index

autoplot.importance_perm, 2

future::plan(), 5

importance_perm, 3
importance_perm(), 2, 3

mirai::daemons(), 5

plan, 4

workflows:
workflows:

yardstick:
yardstick:
yardstick:
yardstick:
yardstick:
yardstick:
yardstick:

:fit.workflow(), 4
:workflow(), 4

:accuracy(), 4
:brier_class(), 4
:brier_survival(), 4
:metric_set(), 4
:rmse(), 4
:roc_auc(), 4
:rsq(), 4

	autoplot.importance_perm
	importance_perm
	Index

