The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette focuses on how to create in-text tables with the inTextSummaryTable
package.
In this vignette we assume you have ready the data.frame
(s) to create the tables. If you have doubts on the data format, please look the introductory vignette at the section “data format”.
We will use the example data available in the clinUtils
package. Let’s load the packages and the data, and get started!
library(inTextSummaryTable)
library(pander)
library(tools) # toTitleCase
library(clinUtils)
# load example data
data(dataADaMCDISCP01)
dataAll <- dataADaMCDISCP01
labelVars <- attr(dataAll, "labelVars")
The getSummaryStatisticsTable
creates an in-text table of summary statistics for variable(s) of interest.
The Demographic data (ADSL
dataset) is used as example for the summary statistics table.
dataSL <- dataAll$ADSL
Variable(s) to summarize in the table are specified via the var
parameter.
Different set of statistics are reported depending on the type of variable: Categorical variable or Continuous variable.
See the documentation in section Base statistics for more details on the statistics included by default for each type, via:
? `inTextSummaryTable-stats`
For a discrete/categorical variable, the in-text table can display the counts/percentages of the number of subjects or records for each category of the variable.
If no variable is specified (via the var
parameter), the counts are displayed for the entire dataset.
getSummaryStatisticsTable(data = dataSL)
Statistic | StatisticValue |
---|---|
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
Please note that this is equivalent of setting (var = 'all'
).
If a variable is specified (via the var
parameter), the counts are displayed for each category.
getSummaryStatisticsTable(data = dataSL, var = "SEX")
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
statN | 5 |
statm | 5 |
statPercTotalN | 7 |
statPercN | 71.43 |
M | |
statN | 2 |
statm | 2 |
statPercTotalN | 7 |
statPercN | 28.57 |
The categories of the variable are sorted alphabetically by default. To sort the categories in a specific order, the variable should be formatted as factor
, whose ordered categories are included in its levels
.
# specify manually the order of the categories
dataSL$SEX <- factor(dataSL$SEX, levels = c("M", "F"))
getSummaryStatisticsTable(data = dataSL, var = "SEX")
Variable group | StatisticValue |
---|---|
Statistic | |
M | |
statN | 2 |
statm | 2 |
statPercTotalN | 7 |
statPercN | 28.57 |
F | |
statN | 5 |
statm | 5 |
statPercTotalN | 7 |
statPercN | 71.43 |
# order categories based on a numeric variable
dataSL$SEXN <- ifelse(dataSL$SEX == "M", 2, 1)
dataSL$SEX <- reorder(dataSL$SEX, dataSL$SEXN)
getSummaryStatisticsTable(data = dataSL, var = "SEX")
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
statN | 5 |
statm | 5 |
statPercTotalN | 7 |
statPercN | 71.43 |
M | |
statN | 2 |
statm | 2 |
statPercTotalN | 7 |
statPercN | 28.57 |
By default, the table only includes the categories present in the input data, to ensure a compact table for CSR export.
dataSLExample <- dataSL
# 'SEX' formatted as character with only male
dataSLExample$SEX <- "M" # only male
getSummaryStatisticsTable(data = dataSLExample, var = "SEX")
Variable group | StatisticValue |
---|---|
Statistic | |
M | |
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
If extra categories should be represented in the table, the categorical variable should be formatted as a factor, whose levels contain all categories to be displayed in the table.
Furthermore, the parameter: varInclude0
should be set to TRUE
or to the specific variable (in case multiple variables are specified) to indicate that categories with 0 counts should be included.
# 'SEX' formatted as factor, to include also female in the table
# (even if not available in the data)
dataSLExample$SEX <- factor("M", levels = c("F", "M"))
getSummaryStatisticsTable(data = dataSLExample, var = "SEX", varInclude0 = TRUE)
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
statN | 0 |
statm | 0 |
statPercTotalN | 7 |
statPercN | 0 |
M | |
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
# or:
getSummaryStatisticsTable(data = dataSLExample, var = "SEX", varInclude0 = "SEX")
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
statN | 0 |
statm | 0 |
statPercTotalN | 7 |
statPercN | 0 |
M | |
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
A specific type of categorical variable is a ‘flag variable’, which indicates if a record fulfills a specific criteria.
Such variable is typically formatted in the data as:
The name of such variable typically ends with ‘FL’ in a CDISC-compliant ADaM or SDTM dataset.
For example, the subject-level dataset contains the following flag variables:
labelVars[grep("FL$", colnames(dataSL), value = TRUE)]
## SAFFL ITTFL EFFFL COMP8FL
## "Safety Population Flag" "Intent-to-Treat Population Flag" "Efficacy Population Flag" "Completers of Week 8 Population Flag"
## COMP16FL COMP24FL DISCONFL DSRAEFL
## "Completers of Week 16 Population Flag" "Completers of Week 24 Population Flag" "Did the Subject Discontinue the Study?" "Discontinued due to AE?"
## DTHFL
## "Subject Died?"
# has the subject discontinued from the study?
dataSL$DISCONFL
## [1] "" "" "Y" "Y" "Y" "Y" "Y"
If this variable is specified in var
, the counts for each category is reported:
getSummaryStatisticsTable(
data = dataSL,
var = "SAFFL"
)
Variable group | StatisticValue |
---|---|
Statistic | |
Y | |
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
However, the interest is often to only reports the counts for the records fulfilling the criteria (records with ‘Y’). This is the case if the variable is specified via the varFlag
parameter too.
getSummaryStatisticsTable(
data = dataSL,
var = "SAFFL",
varFlag = "SAFFL"
)
Statistic | StatisticValue |
---|---|
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
To include the total counts across categories, the varTotalInclude
parameter should be set to TRUE
(or to the specific variable).
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
varTotalInclude = TRUE
)
Variable group | StatisticValue |
---|---|
Statistic | |
Total | |
statN | 7 |
statm | 7 |
statPercTotalN | 7 |
statPercN | 100 |
F | |
statN | 5 |
statm | 5 |
statPercTotalN | 7 |
statPercN | 71.43 |
M | |
statN | 2 |
statm | 2 |
statPercTotalN | 7 |
statPercN | 28.57 |
For a continuous variable, the in-text table displays standard distribution statistics of the variable.
Please note that missing records (NA) for the variable are filtered, so the count statistics (number of subjects, records, percentage) are based only on the non missing records.
For a continuous variable, the presence of different values for the same subject (and across row/column variables) are checked and an appropriate error message is returned if multiple different values are available.
getSummaryStatisticsTable(data = dataSL, var = "AGE")
Statistic | StatisticValue |
---|---|
statN | 7 |
statm | 7 |
statMean | 74.29 |
statSD | 9.827 |
statSE | 3.714 |
statMedian | 75 |
statMin | 57 |
statMax | 89 |
statPercTotalN | 7 |
statPercN | 100 |
The table can contain a mix of categorical and continuous variables.
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "SEX")
)
Variable | StatisticValue |
---|---|
Variable group | |
Statistic | |
AGE | |
statN | 7 |
statm | 7 |
statMean | 74.29 |
statSD | 9.827 |
statSE | 3.714 |
statMedian | 75 |
statMin | 57 |
statMax | 89 |
statPercTotalN | 7 |
statPercN | 100 |
SEX | |
F | |
statN | 5 |
statm | 5 |
statPercTotalN | 7 |
statPercN | 71.43 |
M | |
statN | 2 |
statm | 2 |
statPercTotalN | 7 |
statPercN | 28.57 |
Statistics of interest and their format are specified via the stats
parameter.
If an unique statistic expression is specified, the ‘Statistic’ column doesn’t appear in the table.
In case multiple statistics are specified, these are included as separated row.
A standard set of statistics is specified via specific tags to be passed to the stats
function.
The list of available statistics is mentioned in the section ‘Formatted statistics’ in:
? `inTextSummaryTable-stats`
Please see below examples of commonly used statistics.
# count: n, '%' and m
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
stats = "count"
)
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
n | 5 |
% | 71.4 |
m | 5 |
M | |
n | 2 |
% | 28.6 |
m | 2 |
# n (%)
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
stats = "n (%)"
)
Variable group | n (%) |
---|---|
F | 5 (71.4) |
M | 2 (28.6) |
# n/N (%)
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
stats = "n/N (%)"
)
Variable group | n/N (%) |
---|---|
F | 5/7 (71.4) |
M | 2/7 (28.6) |
## continuous variable
# all summary stats
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "summary"
)
Statistic | StatisticValue |
---|---|
n | 7 |
Mean | 74.3 |
SD | 9.8 |
SE | 3.71 |
Median | 75.0 |
Min | 57 |
Max | 89 |
% | 100 |
m | 7 |
# median (range)
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "median (range)"
)
Median (range) |
---|
75.0 (57,89) |
# median and (range) in a different line:
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "median\n(range)"
)
Median |
---|
75.0 |
# mean (se)
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "mean (se)"
)
Mean (SE) |
---|
74.3 (3.71) |
# mean (sd)
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "mean (sd)"
)
Mean (SD) |
---|
74.3 (9.8) |
To change the formatting of the statistics, the stats
parameter should contain a language object (e.g. expression
or call
) of the default base set of statistics.
See the documentation in section ‘Base statistics’ for more details on the base statistics included by default, via:
? `inTextSummaryTable-stats`
For example, the following count table is restricted to the number of subjects per categories:
getSummaryStatisticsTable(
data = dataSL,
var = c("RACE", "SEX"),
stats = list(N = expression(statN))
)
Variable | N |
---|---|
Variable group | |
RACE | |
BLACK OR AFRICAN AMERICAN | 1 |
WHITE | 6 |
SEX | |
F | 5 |
M | 2 |
The summary statistics table is restricted to the median and range:
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL", "WEIGHTBL", "BMIBL"),
varGeneralLab = "Parameter", statsGeneralLab = "",
colVar = "TRT01P",
stats = list(
`median` = expression(statMedian),
`(min, max)` = expression(paste0("(", statMin, ",", statMax, ")"))
)
)
Parameter | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
AGE | |||
median | 82 | 69 | 78 |
(min, max) | (75,89) | (57,74) | (76,80) |
HEIGHTBL | |||
median | 167.65 | 158.8 | 155.55 |
(min, max) | (157.5,177.8) | (154.9,175.3) | (151.1,160) |
WEIGHTBL | |||
median | 59.65 | 66.7 | 54.45 |
(min, max) | (47.2,72.1) | (51.7,87.1) | (45.4,63.5) |
BMIBL | |||
median | 20.9 | 27.8 | 22.75 |
(min, max) | (19,22.8) | (20.5,28.3) | (17.7,27.8) |
Note that the ‘Standard statistics set’ is formatted internally via the getStatsData
(and getStats
) functions, which creates consistently a list of language
objects.
# this count table:
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
stats = "count"
)
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
n | 5 |
% | 71.4 |
m | 5 |
M | |
n | 2 |
% | 28.6 |
m | 2 |
# ... is equivalent to:
getSummaryStatisticsTable(
data = dataSL,
var = "SEX",
stats = getStats(type = "count")
)
Variable group | StatisticValue |
---|---|
Statistic | |
F | |
n | 5 |
% | 71.4 |
m | 5 |
M | |
n | 2 |
% | 28.6 |
m | 2 |
# this summary table...
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = "mean (se)"
)
Mean (SE) |
---|
74.3 (3.71) |
# ... is equivalent to:
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
stats = getStatsData(type = "mean (se)", var = "AGE", data = dataSL)[["AGE"]]
)
Mean (SE) |
---|
74.3 (3.71) |
The statistics can also be provided for each variable separately, if stats
is named by variable:
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "RACE"),
stats = list(
AGE = getStats("median (range)"),
RACE = getStats("n (%)")
)
)
Variable | StatisticValue |
---|---|
Variable group | |
Statistic | |
AGE Median (range) | 75 (57,89) |
RACE | |
BLACK OR AFRICAN AMERICAN n (%) | 1 (14.3) |
WHITE n (%) | 6 (85.7) |
Extra statistics (not available in the default set of statistics) should be specified via the statsExtra
parameter.
A set of extra utility functions to compute common extra statistics are also available in the package:
cv
functiongeomMean
functiongeomSD
functiongeomCV
function getSummaryStatisticsTable(
data = dataSL,
var = "HEIGHTBL",
# specify extra stats to compute
statsExtra = list(
statCV = cv,
statGeomMean = geomMean,
statGeomSD = geomSD,
statsGeomCV = geomCV
)
)
Statistic | StatisticValue |
---|---|
statN | 7 |
statm | 7 |
statMean | 162.2 |
statSD | 10.25 |
statSE | 3.873 |
statMedian | 158.8 |
statMin | 151.1 |
statMax | 177.8 |
statCV | 6.317 |
statGeomMean | 161.9 |
statGeomSD | 1.064 |
statsGeomCV | 6.21 |
statPercTotalN | 7 |
statPercN | 100 |
Full customized statistics can also be provided. For example, if you would like to specify your own formula for the coefficient of variation:
# include the coefficient of variation via the 'statsExtra' parameter
getSummaryStatisticsTable(
data = dataSL,
var = "HEIGHTBL",
statsExtra = list(statCVPerc = function(x) sd(x)/mean(x)*100)
)
Statistic | StatisticValue |
---|---|
statN | 7 |
statm | 7 |
statMean | 162.2 |
statSD | 10.25 |
statSE | 3.873 |
statMedian | 158.8 |
statMin | 151.1 |
statMax | 177.8 |
statCVPerc | 6.317 |
statPercTotalN | 7 |
statPercN | 100 |
These statistics are then available for customization via the stats
parameter.
# format the statistics with the 'stats' parameter
getSummaryStatisticsTable(
data = dataSL,
var = "HEIGHTBL",
statsExtra = list(statCVPerc = function(x) sd(x)/mean(x)*100),
stats = list(Mean = expression(statMean), 'CV%' = expression(statCVPerc))
)
Statistic | StatisticValue |
---|---|
Mean | 162.2 |
CV% | 6.317 |
Please note that all statistics are rounded by default in the package based on the ‘rounding up’ strategy for rounding off a 5, which differs from the default rounding strategy in R (round
function).
This was a deliberate choice to reproduce summarized statistics created with the SAS software.
Please find more explanations in the documentation of the ? roundHalfUp
and ? roundHalfUpTextFormat
functions.
The detailed rules for the number of decimals for the statistics are described in the section Statistics formatting in:
? `inTextSummaryTable-stats`
To specify fixed amounts of digits for the statistics to be displayed in the table, the statistics are formatted in the stats
parameter.
The percentages are formatted by default as specified in the table below.
By default, the counts for a categorical variables are formatted as specified above:
nDecN
is set to 0)formatPercentage
function # Internal rule for the number of decimals for the percentage
formatPercentage(c(NA, 0, 100, 99.95, 0.012, 34.768))
## [1] "-" "0" "100" ">99.9" "<0.1" "34.8"
# Used by default in the 'getStats' function
getStats(type = "count")
## $n
## roundHalfUpTextFormat(statN, 0)
##
## $`%`
## (function (x, nDec = 1)
## {
## xRF <- ifelse(is.na(x), "-", ifelse(x == 0, "0", ifelse(x ==
## 100, "100", ifelse(x < 0.1, "<0.1", ifelse(x > 99.9,
## ">99.9", roundHalfUpTextFormat(x, digits = nDec))))))
## return(xRF)
## })(statPercN)
##
## $m
## roundHalfUpTextFormat(statm, 0)
The number of decimals for statistics based on a continuous variable is by default as specified in the tables below.
In the package: ‘Very small values’ are considered values below 1.
When specifying the default set of available statistics with the getStats
function, and only if the variable is specified (x
parameter), the number of decimals for a continuous variable is determined by:
getNDecimalsRule
function)getNDecimalsData
functiongetNDecimals
function), such as the number of decimals according the rule won’t be higher that the actual number of decimals available in the datagetMaxNDecimals
function, which is used as ‘base’ number of decimals considered for the summary statisticsPlease note that if a different framework than implemented in steps 1 and 2 should be used for the extraction of the number of decimals for a specific variable, the number of decimals of interest can be fixed via the nDecCont
parameter.
# Duration of Disease (Months)
print(dataSL$DURDIS)
## [1] 32.1 39.8 31.4 17.6 23.7 2.2 31.4
## Extract the number of decimals for each value:
# based on pre-defined rule, this metric should be displayed with 1 decimal:
getNDecimalsRule(x = dataSL$DURDIS)
## [1] 1 1 1 1 1 2 1
# but available in the data only with 0 decimals
getNDecimalsData(x = dataSL$DURDIS)
## [1] 1 1 1 1 1 1 1
# The minimum of the #decimals based on the data and pre-defined rule is:
getNDecimals(x = dataSL$DURDIS)
## [1] 1 1 1 1 1 1 1
## Take the maximum number of decimals
getMaxNDecimals(x = dataSL$DURDIS)
## [1] 1
## Custom set of statistics are extracted when x is specified:
getStats(x = dataSL$DURDIS)
## $n
## roundHalfUpTextFormat(statN, 0)
##
## $Mean
## roundHalfUpTextFormat(statMean, 2)
##
## $SD
## roundHalfUpTextFormat(statSD, 2)
##
## $SE
## roundHalfUpTextFormat(statSE, 3)
##
## $Median
## roundHalfUpTextFormat(statMedian, 2)
##
## $Min
## roundHalfUpTextFormat(statMin, 1)
##
## $Max
## roundHalfUpTextFormat(statMax, 1)
##
## $`%`
## (function (x, nDec = 1)
## {
## xRF <- ifelse(is.na(x), "-", ifelse(x == 0, "0", ifelse(x ==
## 100, "100", ifelse(x < 0.1, "<0.1", ifelse(x > 99.9,
## ">99.9", roundHalfUpTextFormat(x, digits = nDec))))))
## return(xRF)
## })(statPercN)
##
## $m
## roundHalfUpTextFormat(statm, 0)
# To fix the number of decimals:
getStats(type = "summary", nDecCont = 1)
## $n
## roundHalfUpTextFormat(statN, 0)
##
## $Mean
## roundHalfUpTextFormat(statMean, 2)
##
## $SD
## roundHalfUpTextFormat(statSD, 2)
##
## $SE
## roundHalfUpTextFormat(statSE, 3)
##
## $Median
## roundHalfUpTextFormat(statMedian, 2)
##
## $Min
## roundHalfUpTextFormat(statMin, 1)
##
## $Max
## roundHalfUpTextFormat(statMax, 1)
##
## $`%`
## (function (x, nDec = 1)
## {
## xRF <- ifelse(is.na(x), "-", ifelse(x == 0, "0", ifelse(x ==
## 100, "100", ifelse(x < 0.1, "<0.1", ifelse(x > 99.9,
## ">99.9", roundHalfUpTextFormat(x, digits = nDec))))))
## return(xRF)
## })(statPercN)
##
## $m
## roundHalfUpTextFormat(statm, 0)
## Create summary statistics table
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "DURDIS"),
stats = list(
AGE = getStats(type = "median (range)", x = dataSL$AGE),
DURDIS = getStats(type = "median (range)", x = dataSL$DURDIS)
)
)
Variable | Median (range) |
---|---|
AGE | 75.0 (57,89) |
DURDIS | 31.40 (2.2,39.8) |
stats
function (Advanced)A custom function can be created to create custom statistics with fixed number of digits.
For example, the AGE is displayed with 1 digit and the height with two digits:
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(
AGE = list(Median = expression(roundHalfUpTextFormat(statMedian, 1))),
HEIGHTBL = list(Median = expression(roundHalfUpTextFormat(statMedian, 2)))
)
)
Variable | Median |
---|---|
AGE | 75.0 |
HEIGHTBL | 158.80 |
To create the stats
parameter for a specific number of digits, a custom function can be created:
# wrapper function to include median with specific number of digits
# and min/max with specified number of digits - 1
statsDMNum <- function(digitsMin)
list('Median (range)' =
bquote(paste0(
roundHalfUpTextFormat(statMedian, .(digitsMin+1)),
" (", roundHalfUpTextFormat(statMin, .(digitsMin)), ",",
roundHalfUpTextFormat(statMax, .(digitsMin)),
")"
))
)
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL", "WEIGHTBL", "BMIBL", "RACE", "SEX"),
stats = list(
AGE = statsDMNum(0),
HEIGHTBL = statsDMNum(1),
WEIGHTBL = statsDMNum(1),
BMIBL = statsDMNum(1),
RACE = getStats("n (%)"),
SEX = getStats("n (%)")
)
)
Variable | StatisticValue |
---|---|
Variable group | |
Statistic | |
AGE Median (range) | 75.0 (57,89) |
HEIGHTBL Median (range) | 158.80 (151.1,177.8) |
WEIGHTBL Median (range) | 63.50 (45.4,87.1) |
BMIBL Median (range) | 22.80 (17.7,28.3) |
RACE | |
BLACK OR AFRICAN AMERICAN n (%) | 1 (14.3) |
WHITE n (%) | 6 (85.7) |
SEX | |
F n (%) | 5 (71.4) |
M n (%) | 2 (28.6) |
The layout of the statistics is specified via the statsLayout
parameter.
By default, the statistics are included in rows within each variable.
# statsLayout = 'row'
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(Mean = expression(statMean), 'SE' = expression(statSE))
)
Variable | StatisticValue |
---|---|
Statistic | |
AGE | |
Mean | 74.29 |
SE | 3.714 |
HEIGHTBL | |
Mean | 162.2 |
SE | 3.873 |
The statistics can also be included in columns.
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(Mean = expression(statMean), 'SE' = expression(statSE)),
statsLayout = "col"
)
Variable | Mean | SE |
---|---|---|
AGE | 74.29 | 3.714 |
HEIGHTBL | 162.2 | 3.873 |
The statistics can also be specified in different rows, but in a separated column.
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(Mean = expression(statMean), 'SE' = expression(statSE)),
statsLayout = "rowInSepCol"
)
Variable | Statistic | StatisticValue |
---|---|---|
AGE | Mean | 74.29 |
SE | 3.714 | |
HEIGHTBL | Mean | 162.2 |
SE | 3.873 |
By default, if only one statistic is available in the table, the name of the statistic is not included in the rows/columns, as the statistic is generally described in this case in the title of the table.
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(Mean = expression(statMean))
)
Variable | Mean |
---|---|
AGE | 74.29 |
HEIGHTBL | 162.2 |
To include even in this case the name of the statistic, the parameter statsLabInclude
should be set to TRUE
.
getSummaryStatisticsTable(
data = dataSL,
var = c("AGE", "HEIGHTBL"),
stats = list(Mean = expression(statMean)),
statsLabInclude = TRUE
)
Variable | Mean |
---|---|
AGE | |
Mean | 74.29 |
HEIGHTBL | |
Mean | 162.2 |
The general table layout is driven by the specification of variables to be displayed in rows (in the vertical direction) or in columns (in the horizontal direction).
If no variables are specified in var
, counts across row/column variable are displayed.
The adverse events dataset is used for demonstration.
dataAE <- subset(dataAll$ADAE, SAFFL == "Y" & TRTEMFL == "Y")
# ensure that order of elements is the one specified in
# the corresponding numeric variable
dataAE$TRTA <- with(dataAE, reorder(TRTA, TRTAN))
dataAE$AESEV <- factor(
dataAE$AESEV,
levels = c("MILD", "MODERATE", "SEVERE")
)
dataAEInterest <- subset(dataAE, AESOC %in% c(
"INFECTIONS AND INFESTATIONS",
"GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS"
)
)
Specific grouping variable(s) for the columns can be specified via the colVar
parameter and for the rows via the rowVar
parameter.
If multiple category variables are specified, they should be specified in hierarchical order.
# unique row variable
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = "AEDECOD",
stats = getStats("n (%)"),
labelVars = labelVars
)
Dictionary-Derived Term | n (%) |
---|---|
APPLICATION SITE DERMATITIS | 1 (20.0) |
APPLICATION SITE ERYTHEMA | 3 (60.0) |
APPLICATION SITE IRRITATION | 2 (40.0) |
APPLICATION SITE PRURITUS | 4 (80.0) |
FATIGUE | 1 (20.0) |
LOWER RESPIRATORY TRACT INFECTION | 1 (20.0) |
PNEUMONIA | 1 (20.0) |
SECRETION DISCHARGE | 1 (20.0) |
SUDDEN DEATH | 1 (20.0) |
# multiple nested row variables
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | n (%) |
---|---|
Dictionary-Derived Term | |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | |
APPLICATION SITE DERMATITIS | 1 (20.0) |
APPLICATION SITE ERYTHEMA | 3 (60.0) |
APPLICATION SITE IRRITATION | 2 (40.0) |
APPLICATION SITE PRURITUS | 4 (80.0) |
FATIGUE | 1 (20.0) |
SECRETION DISCHARGE | 1 (20.0) |
SUDDEN DEATH | 1 (20.0) |
INFECTIONS AND INFESTATIONS | |
LOWER RESPIRATORY TRACT INFECTION | 1 (20.0) |
PNEUMONIA | 1 (20.0) |
# unique column variable
getSummaryStatisticsTable(
data = dataAEInterest,
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Xanomeline Low Dose | Xanomeline High Dose |
---|---|
2 (100) | 3 (100) |
# combination of rows and columns
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars,
colHeaderTotalInclude = FALSE
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
By default (when outputType
is set to: ‘flextable’), if multiple row variables are specified, they are considered nested and displayed in the first column of the final table. Each sub-category is indicated with a specific indent (customizable with rowVarPadBase
).
Row variables that should be included as a separated column should be specified via the rowVarInSepCol
parameter.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD", "AESEV"),
rowVarInSepCol = "AESEV",
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Severity/Intensity | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|---|
Dictionary-Derived Term | |||
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | |||
APPLICATION SITE DERMATITIS | MILD | 0 | 1 (33.3) |
MODERATE | 0 | 1 (33.3) | |
APPLICATION SITE ERYTHEMA | MILD | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | MILD | 1 (50.0) | 1 (33.3) |
MODERATE | 0 | 1 (33.3) | |
APPLICATION SITE PRURITUS | MILD | 2 (100) | 1 (33.3) |
MODERATE | 0 | 1 (33.3) | |
FATIGUE | MILD | 0 | 1 (33.3) |
SECRETION DISCHARGE | MILD | 1 (50.0) | 0 |
SUDDEN DEATH | SEVERE | 1 (50.0) | 0 |
INFECTIONS AND INFESTATIONS | |||
LOWER RESPIRATORY TRACT INFECTION | MODERATE | 0 | 1 (33.3) |
PNEUMONIA | MODERATE | 1 (50.0) | 0 |
The categories in the row variables can be ordered based on the rowOrder
variable.
This variable is either:
alphabetical
: categories are ordered alphabeticallyauto
: categories are ordered based on the levels if the input variable is a factor, alphabetically otherwisetotal
: categories are ordered based on the ‘total’ column (see section @ref(colTotal)) (if the total column is not included in the table) # 'auto':
# set order of SOC to reverse alphabetical order
dataAEInterest$AESOC <- factor(
dataAEInterest$AESOC,
levels = rev(sort(unique(as.character(dataAEInterest$AESOC))))
)
# AEDECOD is not a factor -> sort alphabetically by default
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA", colTotalInclude = TRUE,
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose | Total |
---|---|---|---|
Dictionary-Derived Term | |||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) | 5 (100) |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) | 2 (40.0) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (20.0) |
PNEUMONIA | 1 (50.0) | 0 | 1 (20.0) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) | 5 (100) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (20.0) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (60.0) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (40.0) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (80.0) |
FATIGUE | 0 | 1 (33.3) | 1 (20.0) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (20.0) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (20.0) |
# total counts
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA", colTotalInclude = TRUE, colTotalLab = "Number of subjects",
rowOrder = "total",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose | Number of subjects |
---|---|---|---|
Dictionary-Derived Term | |||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) | 5 (100) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) | 5 (100) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (80.0) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (60.0) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (40.0) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (20.0) |
FATIGUE | 0 | 1 (33.3) | 1 (20.0) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (20.0) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (20.0) |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) | 2 (40.0) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (20.0) |
PNEUMONIA | 1 (50.0) | 0 | 1 (20.0) |
# same order even if the 'total' column is not specified
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA",
rowOrder = "total",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
In case the order should be different for each row variable, a named list is provided for the rowVar
parameter.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA", #colTotalInclude = TRUE,
rowOrder = c(AESOC = "alphabetical", AEDECOD = "total"),
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
If the row categories should be ordered by total counts for a specific category of the column variable(s), a function rowOrderTotalFilterFct
is specified.
The adverse events are sorted based on the incidence in the treated group.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA", colTotalInclude = TRUE,
rowOrder = "total",
stats = getStats("n (%)"),
labelVars = labelVars,
# consider only the counts of the treated patients to order the rows
rowOrderTotalFilterFct = function(x) subset(x, TRTA == "Xanomeline High Dose")
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose | Total |
---|---|---|---|
Dictionary-Derived Term | |||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) | 5 (100) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) | 5 (100) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (80.0) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (20.0) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (60.0) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (40.0) |
FATIGUE | 0 | 1 (33.3) | 1 (20.0) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (20.0) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (20.0) |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) | 2 (40.0) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (20.0) |
PNEUMONIA | 1 (50.0) | 0 | 1 (20.0) |
If the method to order the rows is more complex, the rowOrder
parameter specifies a function taking the summary table as input and returning the order levels of the elements in the row variable.
For example, the adverse event table is sorted based on the counts of patient presenting this event across all treatment classes, and in case of ties based on the counts of treated-patients presenting this event.
library(plyr)
getSummaryStatisticsTable(
data = dataAEInterest,
type = "count",
rowVar = "AEHLT",
rowOrder = function(x){
x <- subset(x, !isTotal)
totalAcrossTreatments <- subset(x, TRTA == "Total")
# counts across treated patients
totalForTreatmentOnly <- subset(x, TRTA == "Xanomeline High Dose")
dataCounts <- merge(totalAcrossTreatments, totalForTreatmentOnly, by = "AEHLT", suffixes = c(".all", ".treat"))
# sort first based on overall count, then counts of treated patients
dataCounts[with(dataCounts, order(`statN.all`, `statN.treat`, decreasing = TRUE)), "AEHLT"]
},
colVar = "TRTA", colTotalInclude = TRUE,
labelVars = labelVars,
title = "Table: Adverse Events ordered based on total counts",
stats = list(expression(paste0(statN, " (", round(statPercN, 1), ")"))),
footer = "Statistics: n (%)"
)
Table: Adverse Events ordered based on total counts | |||
---|---|---|---|
High Level Term | Xanomeline Low Dose | Xanomeline High Dose | Total |
HLT_0317 | 2 (100) | 2 (66.7) | 4 (80) |
HLT_0617 | 2 (100) | 1 (33.3) | 3 (60) |
HLT_0061 | 1 (50) | 1 (33.3) | 2 (40) |
HLT_0043 | 0 (0) | 1 (33.3) | 1 (20) |
HLT_0052 | 0 (0) | 1 (33.3) | 1 (20) |
HLT_0343 | 0 (0) | 1 (33.3) | 1 (20) |
HLT_0142 | 1 (50) | 0 (0) | 1 (20) |
HLT_0251 | 1 (50) | 0 (0) | 1 (20) |
HLT_0683 | 1 (50) | 0 (0) | 1 (20) |
Statistics: n (%) |
The adverse event table is now ordered based on the counts in the placebo, then treated-patients column, for the organ class and the adverse event term separately.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarLab = labelVars[c("AEDECOD")],
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA", colTotalInclude = TRUE,
rowOrder = list(
AESOC = function(table) {
# records with total for each AESOC
nAESOCPlacebo <- subset(table, !isTotal & grepl("placebo", TRTA) & AEDECOD == "Total")
nAESOCTreat <- subset(table, !isTotal & grepl("High Dose", TRTA) & AEDECOD == "Total")
nAESOCDf <- merge(nAESOCPlacebo, nAESOCTreat, by = "AESOC", suffixes = c(".placebo", ".treatment"))
nAESOCDf[with(nAESOCDf, order(`statN.placebo`, `statN.treatment`, decreasing = TRUE)), "AESOC"]
},
AEDECOD = function(table) {
# records with counts for each AEDECOD
nAEDECODPlacebo <- subset(table, !isTotal & grepl("placebo", TRTA) & AEDECOD != "Total")
nAEDECODTreat <- subset(table, !isTotal & grepl("High Dose", TRTA) & AEDECOD != "Total")
nAEDECODDf <- merge(nAEDECODPlacebo, nAEDECODTreat, by = "AEDECOD", suffixes = c(".placebo", ".treatment"))
nAEDECODDf[with(nAEDECODDf, order(`statN.placebo`, `statN.treatment`, decreasing = TRUE)), "AEDECOD"]
}
),
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose | Total |
---|---|---|---|
Dictionary-Derived Term | |||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) | 5 (100) |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) | 2 (40.0) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (20.0) |
PNEUMONIA | 1 (50.0) | 0 | 1 (20.0) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) | 5 (100) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (20.0) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (60.0) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (40.0) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (80.0) |
FATIGUE | 0 | 1 (33.3) | 1 (20.0) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (20.0) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (20.0) |
The labels used for the variables parameter (row variables) are automatically extracted from the labels contained in the SAS dataset, by specifying the labelVars
parameter.
# combination of rows and columns
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
The label can also be specified directly via the rowVarLab
parameter, for each variable in rowVar
.
If an unique row label should be used (even if multiple row variables are specified), rowVarLab
is set to this unique label.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
As for the variable to summarize, to include categories in the row or column variables not available in the data, these variables should be formatted as a factor with categories specified in its levels.
Furthermore, the parameters rowInclude0
and colInclude0
should be set to TRUE to include counts for empty categories within the row/column.
## only consider a subset of adverse events
dataAESubset <- subset(dataAE, AEHLT == "HLT_0617")
## create dummy categories for:
# treatment
dataAESubset$TRTA <- with(dataAESubset,
factor(TRTA, levels = c(unique(as.character(TRTA)), "Treatment B"))
)
# low-level term category
dataAESubset$AELLT <- with(dataAESubset,
factor(AELLT, levels = c(unique(as.character(AELLT)), "Lymphocyte percentage increased"))
)
# create summary statistics table
getSummaryStatisticsTable(
data = dataAESubset,
type = "count",
rowVar = c("AEHLT", "AELLT"),
rowInclude0 = TRUE, colInclude0 = TRUE,
colVar = "TRTA",
labelVars = labelVars,
title = "Table: Adverse Events: white blood cell analyses",
stats = getStats("n (%)"),
footer = "Statistics: n (%)"
)
Table: Adverse Events: white blood cell analyses | |||
---|---|---|---|
High Level Term | Xanomeline High Dose | Xanomeline Low Dose | Treatment B |
Lowest Level Term | |||
HLT_0617 | |||
APPLICATION SITE REDNESS | 1 (100) | 2 (100) | - |
Lymphocyte percentage increased | 0 | 0 | - |
Statistics: n (%) |
The variable(s) used for the summary statistics (var
) are included by default in rows.
dataDIABP <- subset(dataAll$ADVS,
SAFFL == "Y" & ANL01FL == "Y" &
PARAMCD == "DIABP" &
AVISIT %in% c("Baseline", "Week 8") &
ATPT == "AFTER LYING DOWN FOR 5 MINUTES"
)
dataDIABP$TRTA <- reorder(dataDIABP$TRTA, dataDIABP$TRTAN)
dataDIABP$AVISIT <- reorder(dataDIABP$AVISIT, dataDIABP$AVISITN)
getSummaryStatisticsTable(
data = dataDIABP,
var = c("AVAL", "CHG"),
colVar = "TRTA",
rowVar = "AVISIT",
labelVars = labelVars,
stats = getStats("summary-default")
)
Analysis Visit | Placebo | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|---|
Variable | |||
Statistic | |||
Baseline | |||
Analysis Value | |||
n | 2 | 2 | 3 |
Mean | 71 | 74 | 68.33 |
SD | 1.414 | 14.14 | 11.59 |
SE | 1 | 10 | 6.692 |
Median | 71 | 74 | 70 |
Min | 70 | 64 | 56 |
Max | 72 | 84 | 79 |
Change from Baseline | |||
n | 2 | 2 | 3 |
Mean | 0 | 0 | 0 |
SD | 0 | 0 | 0 |
SE | 0 | 0 | 0 |
Median | 0 | 0 | 0 |
Min | 0 | 0 | 0 |
Max | 0 | 0 | 0 |
Week 8 | |||
Analysis Value | |||
n | 1 | 2 | 3 |
Mean | 72 | 61.5 | 68 |
SD | NA | 3.536 | 7 |
SE | NA | 2.5 | 4.041 |
Median | 72 | 61.5 | 68 |
Min | 72 | 59 | 61 |
Max | 72 | 64 | 75 |
Change from Baseline | |||
n | 1 | 2 | 3 |
Mean | 0 | -12.5 | -0.3333 |
SD | NA | 10.61 | 9.238 |
SE | NA | 7.5 | 5.333 |
Median | 0 | -12.5 | 5 |
Min | 0 | -20 | -11 |
Max | 0 | -5 | 5 |
In case multiple variables are to be summarized, the different variables can be included in different columns by including the specific label: ‘variable’ in colVar
. Beware that such layout only makes sense for variables with similar types (e.g. all numeric variables).
getSummaryStatisticsTable(
data = dataDIABP,
var = c("AVAL", "CHG"),
colVar = c("variable", "TRTA"),
rowVar = "AVISIT",
labelVars = labelVars,
stats = getStats("summary-default")
)
Analysis Visit | Analysis Value | Change from Baseline | ||||
---|---|---|---|---|---|---|
Statistic | Placebo | Xanomeline Low Dose | Xanomeline High Dose | Placebo | Xanomeline Low Dose | Xanomeline High Dose |
Baseline | ||||||
n | 2 | 2 | 3 | 2 | 2 | 3 |
Mean | 71 | 74 | 68.33 | 0 | 0 | 0 |
SD | 1.414 | 14.14 | 11.59 | 0 | 0 | 0 |
SE | 1 | 10 | 6.692 | 0 | 0 | 0 |
Median | 71 | 74 | 70 | 0 | 0 | 0 |
Min | 70 | 64 | 56 | 0 | 0 | 0 |
Max | 72 | 84 | 79 | 0 | 0 | 0 |
Week 8 | ||||||
n | 1 | 2 | 3 | 1 | 2 | 3 |
Mean | 72 | 61.5 | 68 | 0 | -12.5 | -0.3333 |
SD | NA | 3.536 | 7 | NA | 10.61 | 9.238 |
SE | NA | 2.5 | 4.041 | NA | 7.5 | 5.333 |
Median | 72 | 61.5 | 68 | 0 | -12.5 | 5 |
Min | 72 | 59 | 61 | 0 | -20 | -11 |
Max | 72 | 64 | 75 | 0 | -5 | 5 |
By default, the variable label is not included if only one summary statistic variable is specified.
getSummaryStatisticsTable(data = dataSL, var = "AGE", colVar = "TRT01P")
Statistic | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
statN | 2 | 3 | 2 |
statm | 2 | 3 | 2 |
statMean | 82 | 66.67 | 78 |
statSD | 9.899 | 8.737 | 2.828 |
statSE | 7 | 5.044 | 2 |
statMedian | 82 | 69 | 78 |
statMin | 75 | 57 | 76 |
statMax | 89 | 74 | 80 |
statPercTotalN | 2 | 3 | 2 |
statPercN | 100 | 100 | 100 |
To include the label in case only one summary statistic variable is specified, the parameter varLabInclude
should be set to TRUE.
getSummaryStatisticsTable(
data = dataSL,
var = "AGE",
varLabInclude = TRUE,
colVar = "TRT01P"
)
Variable | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
Statistic | |||
AGE | |||
statN | 2 | 3 | 2 |
statm | 2 | 3 | 2 |
statMean | 82 | 66.67 | 78 |
statSD | 9.899 | 8.737 | 2.828 |
statSE | 7 | 5.044 | 2 |
statMedian | 82 | 69 | 78 |
statMin | 75 | 57 | 76 |
statMax | 89 | 74 | 80 |
statPercTotalN | 2 | 3 | 2 |
statPercN | 100 | 100 | 100 |
It might be of interest to display the counts of all subjects per row/column variable in association of the summary statistic of a variable of interest.
For example it could be of interest to report the total number of subjects per group, which could differ from the total number of subjects for a variable of interest if this variable contain missing values.
dataAEInterest$AESEVN <- ifelse(dataAEInterest$AESEV == "MILD", 1, 2)
dataAEInterestWC <- ddply(dataAEInterest, c("AEDECOD", "USUBJID", "TRTA"), function(x) {
x[which.max(x$AESEVN), ]
})
dataAEInterestWC[1, "AESEV"] <- NA
getSummaryStatisticsTable(
data = dataAEInterestWC,
colVar = "TRTA",
rowVar = "AEBODSYS",
stats = getStats("n (%)"),
var = c("AESEV", "all"),
labelVars = labelVars
)
Body System or Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Variable | ||
Variable group | ||
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
Severity/Intensity | ||
MILD | 2 (100) | 2 (66.7) |
MODERATE | - | 2 (66.7) |
SEVERE | 1 (50.0) | - |
all | 2 (100) | 3 (100) |
INFECTIONS AND INFESTATIONS | ||
Severity/Intensity MODERATE | 1 (50.0) | 1 (33.3) |
all | 1 (50.0) | 1 (33.3) |
The summary table contains different types of total:
By default, the totals are extracted based on the input data, but separated datasets can be specified for the header, percentage computation, row or column total.
The different types of total of the summary table are summarized below:
Type | Inclusion in the table | Dataset: parameter name | Dataset: default |
---|---|---|---|
Total in the column header | Yes by default removed if colHeaderTotalInclude = FALSE |
dataTotal |
data for table content dataTotalCol for total column |
Total for the percentage | Only if percentage requested in stats |
dataTotalPerc |
dataTotal for table content dataTotalCol for total column (for ‘total’ if specified as a list) |
Total across rows | Not by default for specified row variable with rowVarTotalInclude |
dataTotalRow |
data for table content dataTotalCol for total column (for ‘total’ if specified as a list) |
Total across columns | Not by default only if colTotalInclude = TRUE |
dataTotalCol |
data |
By default, the total reported in the total header is extracted from the available number of subjects in the input data
.
For example, the total number of patients per treatment arm is extracted from the subject-level (ADSL
) dataset.
# by default, total number of subjects extracted from data
getSummaryStatisticsTable(
data = subset(dataAEInterest, AESOC == "INFECTIONS AND INFESTATIONS"),
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (100) |
PNEUMONIA | 1 (100) | 0 |
If the total should be extracted from a different dataset, it should be specified via the dataTotal
variable. Please note that by default dataTotal
is also used for the computation of the percentage.
# dataset used to extract the 'Total'
dataTotalAE <- subset(dataAll$ADSL, SAFFL == "Y")
# should contain columns specified in 'colVar'
dataTotalAE$TRTA <- dataTotalAE$TRT01A
getSummaryStatisticsTable(
data = subset(dataAEInterest, AESOC == "INFECTIONS AND INFESTATIONS"),
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotal = dataTotalAE,
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
The total number of subjects in each column is by default included. This is not displayed if colHeaderTotalInclude
is set to FALSE.
getSummaryStatisticsTable(
data = subset(dataAEInterest, AESOC == "INFECTIONS AND INFESTATIONS"),
rowVar = c("AESOC", "AEDECOD"),
rowVarTotalInclude = "AEDECOD",
rowVarTotalInSepRow = "AEDECOD",
colVar = "TRTA",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotal = dataTotalAE,
labelVars = labelVars,
colHeaderTotalInclude = FALSE
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
Total | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
A different dataset used for the computation of the percentage can be specified via the dataTotalPerc
parameter.
getSummaryStatisticsTable(
data = subset(dataAEInterest, AESOC == "INFECTIONS AND INFESTATIONS"),
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotalPerc = dataTotalAE,
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
Please note that by default, if dataTotalPerc
is specified, but not dataTotal
, counts reported in the column header are still extracted from data
.
If the total number of subjects differ between the components of the table, the extra row/column(s) variable(s) are specified via colVarTotalPerc
/rowVarTotalPerc
.
For example, in a table of laboratory measurements per reference range (laboratory abnormalities): the total number of subjects for the computation of the percentage are extracted based on the number of subjects with available measurements per visit.
dataLB <- subset(dataAll$ADLBC,
SAFFL == "Y" &
PARAMCD %in% c("K", "CHOL") &
grepl("(Baseline)|(Week 20)", AVISIT)
)
dataLB$AVISIT <- with(dataLB, reorder(trimws(AVISIT), AVISITN))
# counts versus the total per actual treatment arm
getSummaryStatisticsTable(
data = dataLB,
colVar = "TRTA",
rowVar = c("PARAM", "AVISIT"),
var = "LBNRIND",
stats = getStats("n (%)"),
rowAutoMerge = FALSE, emptyValue = "0",
)
PARAM | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
AVISIT | |||
Variable group | |||
Cholesterol (mmol/L) | |||
Baseline | |||
HIGH | 1 (50.0) | 0 | 0 |
NORMAL | 1 (50.0) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 1 (50.0) | 1 (33.3) | 1 (50.0) |
Potassium (mmol/L) | |||
Baseline | |||
NORMAL | 2 (100) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 0 | 1 (33.3) | 1 (50.0) |
# percentage based on total number of subjects with available
# measurement at specific visit for each parameter
getSummaryStatisticsTable(
data = dataLB,
colVar = "TRTA",
rowVar = c("PARAM", "AVISIT"),
rowVarTotalPerc = c("PARAM", "AVISIT"),
var = "LBNRIND",
stats = getStats("n (%)"),
rowAutoMerge = FALSE, emptyValue = "0",
)
PARAM | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
AVISIT | |||
Variable group | |||
Cholesterol (mmol/L) | |||
Baseline | |||
HIGH | 1 (50.0) | 0 | 0 |
NORMAL | 1 (50.0) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 1 (100) | 1 (100) | 1 (100) |
Potassium (mmol/L) | |||
Baseline | |||
NORMAL | 2 (100) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 0 | 1 (100) | 1 (100) |
Please note the different percentage for the number of patients with normal cholesterol measurements at week 20 between the two tables.
By default, the percentage is based on the number of subjects.
If the percentage should be computed based on the number of records instead, the parameter: statsPerc
should be set to statm
(statN
by default).
For example, to extract the percentage of laboratory measurements by reference range and parameter:
getSummaryStatisticsTable(
data = dataLB,
colVar = "TRTA",
rowVar = c("PARAM", "AVISIT"),
rowVarTotalPerc = c("PARAM", "AVISIT"),
var = "LBNRIND",
stats = getStats("m (%)"),
statsPerc = "statm",
rowAutoMerge = FALSE, emptyValue = "0",
)
PARAM | Placebo | Xanomeline High Dose | Xanomeline Low Dose |
---|---|---|---|
AVISIT | |||
Variable group | |||
Cholesterol (mmol/L) | |||
Baseline | |||
HIGH | 1 (50.0) | 0 | 0 |
NORMAL | 1 (50.0) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 1 (100) | 1 (100) | 1 (100) |
Potassium (mmol/L) | |||
Baseline | |||
NORMAL | 2 (100) | 3 (100) | 2 (100) |
Week 20 | |||
NORMAL | 0 | 1 (100) | 1 (100) |
The total across all columns is included if the colTotalInclude
is set to TRUE.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
colTotalInclude = TRUE,
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotal = dataTotalAE,
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose | Total |
---|---|---|---|
Dictionary-Derived Term | |||
INFECTIONS AND INFESTATIONS | |||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (14.3) |
PNEUMONIA | 1 (50.0) | 0 | 1 (14.3) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | |||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (14.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (42.9) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (28.6) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (57.1) |
FATIGUE | 0 | 1 (33.3) | 1 (14.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (14.3) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (14.3) |
By default, the total number of subjects is extracted based on the input dataset across columns: subjects presenting the same event in multiple column(s) are counted once in the column total (e.g. for adverse event table in a context of cross-over experiment).
This column is by default labelled ‘Total’, but this can be customized with the colTotalLab
parameter.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
colTotalInclude = TRUE, colTotalLab = "All subjects",
stats = getStats("n (%)"),
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotal = dataTotalAE,
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline Low Dose | Xanomeline High Dose | All subjects |
---|---|---|---|
Dictionary-Derived Term | |||
INFECTIONS AND INFESTATIONS | |||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) | 1 (14.3) |
PNEUMONIA | 1 (50.0) | 0 | 1 (14.3) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | |||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) | 1 (14.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) | 3 (42.9) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) | 2 (28.6) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) | 4 (57.1) |
FATIGUE | 0 | 1 (33.3) | 1 (14.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 | 1 (14.3) |
SUDDEN DEATH | 1 (50.0) | 0 | 1 (14.3) |
A different dataset for the total column can also be specified via the dataTotalCol
parameter.
For example, the table is restricted to only the treatment arm, but both arms are considered in the total column:
getSummaryStatisticsTable(
data = subset(dataAEInterest, grepl("High Dose", TRTA)),
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
colTotalInclude = TRUE, colTotalLab = "Placebo and treatment arm",
dataTotalCol = dataAEInterest,
stats = getStats("n (%)"), emptyValue = "0",
rowVarLab = c(
'AESOC' = "TEAE by SOC and Preferred Term\nn (%)"
),
dataTotal = dataTotalAE,
labelVars = labelVars
)
TEAE by SOC and Preferred Term | Xanomeline High Dose | Placebo and treatment arm |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 1 (33.3) | 1 (14.3) |
PNEUMONIA | 0 | 1 (14.3) |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 1 (33.3) | 1 (14.3) |
APPLICATION SITE ERYTHEMA | 1 (33.3) | 3 (42.9) |
APPLICATION SITE IRRITATION | 1 (33.3) | 2 (28.6) |
APPLICATION SITE PRURITUS | 2 (66.7) | 4 (57.1) |
FATIGUE | 1 (33.3) | 1 (14.3) |
SECRETION DISCHARGE | 0 | 1 (14.3) |
SUDDEN DEATH | 0 | 1 (14.3) |
If the total should be included across elements of specific rowVar
variable(s), this(these) variable(s) should be included in rowVarTotalInclude
.
# total reported across AESOC
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarTotalInclude = "AESOC",
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) |
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
# total reported across AESOC and across AEDECOD
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarTotalInclude = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
Any Primary System Organ Class, Dictionary-Derived Term | 2 (100) | 3 (100) |
INFECTIONS AND INFESTATIONS | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | 2 (100) | 3 (100) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
In case multiple row variables are specified, the total can also be included for each of this variable. In this case, the total is by default included in the header of each category of this variable.
For the first row variable, the total is included in the first row of the table, with the label specified in rowTotalLab
.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarTotalInclude = "AESOC", rowTotalLab = "Any AE",
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
Any AE | 2 (100) | 3 (100) |
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
The row total can also be included as a separated category (‘Total’) in the table, if this variable is additionally specified in rowVarTotalInSepRow
.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
rowVarTotalInclude = "AEDECOD",
rowVarTotalInSepRow = "AEDECOD",
colVar = "TRTA",
stats = getStats("n (%)"),
labelVars = labelVars
)
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
Total | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
Total | 2 (100) | 3 (100) |
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
A different dataset considered for the row total is specified via the dataTotalRow
parameter.
Different datasets can also be specified for each row variable separately (via a named list).
For example, the worst-case severity per adverse event, per and across system organ classes are displayed in the table below.
dataAEInterest$AESEVN <- as.numeric(dataAEInterest$AESEV)
# compute worst-case scenario per subject*AE term*treatment
dataAEInterestWC <- ddply(dataAEInterest, c("AESOC", "AEDECOD", "USUBJID", "TRTA"), function(x){
x[which.max(x$AESEVN), ]
})
## datasets used for the total:
# for total: compute worst-case across SOC and across AE term
# (otherwise patient counted in multiple categories if present different categories for different AEs)
dataTotalRow <- list(
# within visit (across AEDECOD)
'AEDECOD' = ddply(dataAEInterest, c("AESOC", "USUBJID", "TRTA"), function(x){
x[which.max(x$AESEVN), ]
}),
# across visits
'AESOC' = ddply(dataAEInterest, c("USUBJID", "TRTA"), function(x){
x[which.max(x$AESEVN), ]
})
)
getSummaryStatisticsTable(
data = dataAEInterestWC,
## row variables:
rowVar = c("AESOC", "AEDECOD", "AESEV"),
rowVarInSepCol = "AESEV",
# total for column header and denominator
dataTotal = dataTotalAE,
# include total across SOC and across AEDECOD
rowVarTotalInclude = c("AESOC", "AEDECOD"),
# data for total row
dataTotalRow = dataTotalRow,
# count for each severity category for the total
rowVarTotalByVar = "AESEV",
rowTotalLab = "Any TEAE",
rowVarLab = c(AESOC = "Subjects with, n(%):", AESEV = "Worst-case scenario"),
# sort per total in the total column
rowOrder = "total",
## column variables
colVar = "TRTA",
stats = getStats("n (%)"),
emptyValue = "0",
labelVars = labelVars
)
Subjects with, n(%): | Worst-case scenario | Xanomeline Low Dose | Xanomeline High Dose |
---|---|---|---|
Dictionary-Derived Term | |||
Any TEAE | MODERATE | 1 (50.0) | 3 (100) |
SEVERE | 1 (50.0) | 0 | |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | MODERATE | 0 | 2 (66.7) |
SEVERE | 1 (50.0) | 0 | |
MILD | 1 (50.0) | 1 (33.3) | |
APPLICATION SITE PRURITUS | MODERATE | 0 | 1 (33.3) |
MILD | 2 (100) | 1 (33.3) | |
APPLICATION SITE ERYTHEMA | MILD | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | MODERATE | 0 | 1 (33.3) |
MILD | 1 (50.0) | 0 | |
APPLICATION SITE DERMATITIS | MODERATE | 0 | 1 (33.3) |
FATIGUE | MILD | 0 | 1 (33.3) |
SECRETION DISCHARGE | MILD | 1 (50.0) | 0 |
SUDDEN DEATH | SEVERE | 1 (50.0) | 0 |
INFECTIONS AND INFESTATIONS | MODERATE | 1 (50.0) | 1 (33.3) |
LOWER RESPIRATORY TRACT INFECTION | MODERATE | 0 | 1 (33.3) |
PNEUMONIA | MODERATE | 1 (50.0) | 0 |
If the data is loaded into R with the read_haven
of the haven
package, or the loadDataADaMSDTM
function of the clinUtils
package, the label for each variable is stored in the ‘label’ attribute of the corresponding column.
However, if this label is lost (e.g. if the object is subsetted), labels can be specified via the labelVars
parameter for all variables at once, or via specific [parameter]Lab
parameter, as rowVarLab
/colVarLab
/varLab
for the row/column/variable to summarize respectively.
Title and footnote are specified via the corresponding title
and footer
parameters. The convenient function toTitleCase
from the tools
package is used to set title case for the title of the summary statistics table.
getSummaryStatisticsTable(
data = dataAEInterest,
rowVar = c("AESOC", "AEDECOD"),
colVar = "TRTA",
stats = getStats("n (%)"),
dataTotal = dataTotalAE,
labelVars = labelVars,
title = toTitleCase("MOR106-CL-102: Adverse Events by System Organ Class and Preferred Term (Safety Analysis Set, Part 1)"),
footer = c(
"N=number of subjects with data; n=number of subjects with this observation",
"Denominator for percentage calculations = the total number of subjects per treatment group in the safety population"
)
)
MOR106-CL-102: Adverse Events by System Organ Class and Preferred Term (Safety Analysis Set, Part 1) | ||
---|---|---|
Primary System Organ Class | Xanomeline Low Dose | Xanomeline High Dose |
Dictionary-Derived Term | ||
INFECTIONS AND INFESTATIONS | ||
LOWER RESPIRATORY TRACT INFECTION | 0 | 1 (33.3) |
PNEUMONIA | 1 (50.0) | 0 |
GENERAL DISORDERS AND ADMINISTRATION SITE CONDITIONS | ||
APPLICATION SITE DERMATITIS | 0 | 1 (33.3) |
APPLICATION SITE ERYTHEMA | 2 (100) | 1 (33.3) |
APPLICATION SITE IRRITATION | 1 (50.0) | 1 (33.3) |
APPLICATION SITE PRURITUS | 2 (100) | 2 (66.7) |
FATIGUE | 0 | 1 (33.3) |
SECRETION DISCHARGE | 1 (50.0) | 0 |
SUDDEN DEATH | 1 (50.0) | 0 |
N=number of subjects with data; n=number of subjects with this observation | ||
Denominator for percentage calculations = the total number of subjects per treatment group in the safety population |
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
locale: C
attached base packages: tools, stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: plyr(v.1.8.9), pander(v.0.6.5), clinUtils(v.0.2.0), inTextSummaryTable(v.3.3.3) and knitr(v.1.47)
loaded via a namespace (and not attached): gtable(v.0.3.5), xfun(v.0.44), bslib(v.0.7.0), ggplot2(v.3.5.1), htmlwidgets(v.1.6.4), ggrepel(v.0.9.5), vctrs(v.0.6.5), crosstalk(v.1.2.1), generics(v.0.1.3), curl(v.5.2.1), tibble(v.3.2.1), fansi(v.1.0.6), highr(v.0.11), pkgconfig(v.2.0.3), data.table(v.1.15.4), uuid(v.1.2-0), lifecycle(v.1.0.4), flextable(v.0.9.6), farver(v.2.1.2), stringr(v.1.5.1), compiler(v.4.4.0), textshaping(v.0.4.0), munsell(v.0.5.1), httpuv(v.1.6.15), fontquiver(v.0.2.1), fontLiberation(v.0.1.0), htmltools(v.0.5.8.1), sass(v.0.4.9), yaml(v.2.3.8), later(v.1.3.2), pillar(v.1.9.0), crayon(v.1.5.2), jquerylib(v.0.1.4), gfonts(v.0.2.0), openssl(v.2.2.0), DT(v.0.33), cachem(v.1.1.0), mime(v.0.12), fontBitstreamVera(v.0.1.1), tidyselect(v.1.2.1), zip(v.2.3.1), digest(v.0.6.35), stringi(v.1.8.4), reshape2(v.1.4.4), dplyr(v.1.1.4), labeling(v.0.4.3), forcats(v.1.0.0), cowplot(v.1.1.3), fastmap(v.1.2.0), grid(v.4.4.0), colorspace(v.2.1-0), cli(v.3.6.2), magrittr(v.2.0.3), crul(v.1.4.2), utf8(v.1.2.4), withr(v.3.0.0), gdtools(v.0.3.7), scales(v.1.3.0), promises(v.1.3.0), rmarkdown(v.2.27), officer(v.0.6.6), askpass(v.1.2.0), ragg(v.1.3.2), hms(v.1.1.3), shiny(v.1.8.1.1), evaluate(v.0.24.0), haven(v.2.5.4), viridisLite(v.0.4.2), rlang(v.1.1.4), Rcpp(v.1.0.12), xtable(v.1.8-4), glue(v.1.7.0), httpcode(v.0.3.0), xml2(v.1.3.6), jsonlite(v.1.8.8), R6(v.2.5.1) and systemfonts(v.1.1.0)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.