The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

incase

r-universe status badge License: MIT R build status

incase provides a more pipe-friendly alternative to dplyr’s case_when() and if_else().

Installation

You can install the released version of incase from CRAN with:

install.packages("incase")

or the development version from GitHub with:

# install.packages("pak")
pak::pkg_install("rossellhayes/incase")

Usage

Pipe-friendly conditionals

incase’s in_case() and if_case() accept a vector as their first input, allowing you to take full advantage of magrittr’s .

1:20 %>%
  in_case(
    . %% 15 == 0 ~ "fizz buzz",
    . %%  3 == 0 ~ "fizz",
    . %%  5 == 0 ~ "buzz",
    TRUE         ~ .
  )
#>  [1] "1"         "2"         "fizz"      "4"         "buzz"      "fizz"     
#>  [7] "7"         "8"         "fizz"      "buzz"      "11"        "fizz"     
#> [13] "13"        "14"        "fizz buzz" "16"        "17"        "fizz"     
#> [19] "19"        "buzz"

1:20 %>% if_case(. %% 3 == 0, "fizz", .)
#>  [1] "1"    "2"    "fizz" "4"    "5"    "fizz" "7"    "8"    "fizz" "10"  
#> [11] "11"   "fizz" "13"   "14"   "fizz" "16"   "17"   "fizz" "19"   "20"

Automatic type conversion

incase functions automatically coerce types. This is especially useful when dealing with integers or NAs.

x <- -1:5

# Replace -1 with NA
dplyr::case_when(x == -1 ~ NA, TRUE ~ x)
#> [1] NA  0  1  2  3  4  5
dplyr::case_when(x == -1 ~ NA_integer_, TRUE ~ x)
#> [1] NA  0  1  2  3  4  5
in_case(x == -1 ~ NA, TRUE ~ x)
#> [1] NA  0  1  2  3  4  5

# Replace -1 with 0
dplyr::case_when(x == -1 ~ 0, TRUE ~ x)
#> [1] 0 0 1 2 3 4 5
dplyr::case_when(x == -1 ~ 0L, TRUE ~ x)
#> [1] 0 0 1 2 3 4 5
in_case(x == -1 ~ 0, TRUE ~ x)
#> [1] 0 0 1 2 3 4 5

With incase, you no longer have to worry about specifying the type of your NAs or adding L to your integers.

Easy default values

in_case() adds preserve and default arguments as a more intuitive alternative to TRUE ~ ....*

1:20 %>%
  in_case(
    . %% 15 == 0 ~ "fizz buzz",
    . %%  3 == 0 ~ "fizz",
    . %%  5 == 0 ~ "buzz"
  )
#>  [1] NA          NA          "fizz"      NA          "buzz"      "fizz"     
#>  [7] NA          NA          "fizz"      "buzz"      NA          "fizz"     
#> [13] NA          NA          "fizz buzz" NA          NA          "fizz"     
#> [19] NA          "buzz"

1:20 %>%
  in_case(
    . %% 15 == 0 ~ "fizz buzz",
    . %%  3 == 0 ~ "fizz",
    . %%  5 == 0 ~ "buzz",
    preserve     = TRUE
  )
#>  [1] "1"         "2"         "fizz"      "4"         "buzz"      "fizz"     
#>  [7] "7"         "8"         "fizz"      "buzz"      "11"        "fizz"     
#> [13] "13"        "14"        "fizz buzz" "16"        "17"        "fizz"     
#> [19] "19"        "buzz"

1:20 %>%
  in_case(
    . %% 15 == 0 ~ "fizz buzz",
    . %%  3 == 0 ~ "fizz",
    . %%  5 == 0 ~ "buzz",
    default      = "pass"
  )
#>  [1] "pass"      "pass"      "fizz"      "pass"      "buzz"      "fizz"     
#>  [7] "pass"      "pass"      "fizz"      "buzz"      "pass"      "fizz"     
#> [13] "pass"      "pass"      "fizz buzz" "pass"      "pass"      "fizz"     
#> [19] "pass"      "buzz"

Simplified interface for recoding

switch_case() works as a convenient shorthand for in_case() when recoding discrete values.

parties
#>  [1] "G" "I" "D" "I" "R" "D" "L" "D" NA  "L" NA  "G" "R" NA  "G" NA  "L" "D" "D"
#> [20] "I"

parties %>%
  switch_case(
    "D"         ~ "Democrat",
    "R"         ~ "Republican",
    c("G", "L") ~ "Other",
    c("I", NA)  ~ "Independent"
  )
#>  [1] "Other"       "Independent" "Democrat"    "Independent" "Republican" 
#>  [6] "Democrat"    "Other"       "Democrat"    "Independent" "Other"      
#> [11] "Independent" "Other"       "Republican"  "Independent" "Other"      
#> [16] "Independent" "Other"       "Democrat"    "Democrat"    "Independent"

grep_case() allows you to recode values with pattern matching.

countries <- c(
  "France", "Ostdeutschland", "Westdeutschland", "Nederland",
  "België (Vlaanderen)", "Belgique (Wallonie)", "Luxembourg", "Italia"
)

grep_case(
  countries,
  "Deutschland" ~ "Germany",
  "Belg"        ~ "Belgium",
  "Nederland"   ~ "Netherlands",
  "Italia"      ~ "Italy",
  preserve      = TRUE,
  ignore.case   = TRUE
)
#> [1] "France"      "Germany"     "Germany"     "Netherlands" "Belgium"    
#> [6] "Belgium"     "Luxembourg"  "Italy"

Easily recode to (ordered) factor

When you need an ordered factor, the *_fct() family of functions lets you save a step by using the order of your cases as the order of your factor levels. Use ordered = TRUE to create an ordered factor and ordered = FALSE to make a regular-old factor.

data <- runif(10, 0, 10)
data
#>  [1] 3.9075340 7.4098608 2.1540250 8.4599089 3.0487929 8.9268192 9.9001603
#>  [8] 9.2022173 0.3128016 5.2452107

data %>% 
  in_case_fct(
    . < 3   ~ "Low",
    . < 7   ~ "Medium",
    default = "High",
    ordered = TRUE
  )
#>  [1] Medium High   Low    High   Medium High   High   High   Low    Medium
#> Levels: Low < Medium < High

parties %>%
  switch_case_fct(
    "D"         ~ "Democrat",
    "R"         ~ "Republican",
    c("G", "L") ~ "Other",
    c("I", NA)  ~ "Independent"
  )
#>  [1] Other       Independent Democrat    Independent Republican  Democrat   
#>  [7] Other       Democrat    Independent Other       Independent Other      
#> [13] Republican  Independent Other       Independent Other       Democrat   
#> [19] Democrat    Independent
#> Levels: Democrat Republican Other Independent

Hex sticker fonts are Source Sans by Adobe and Hasklig by Ian Tuomi.

Please note that incase is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

* Intuitiveness may vary from person to person.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.