The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This vignette demonstrates how to combine data from the Spanish Statistical Office’s Atlas (accessed through ineAtlas) with other administrative data sources. We’ll analyze the relationship between income levels and voting patterns in Madrid’s census tracts using data from the 2021 regional elections.
We’ll combine two data sources: 1. Income data at the census tract level 2. Electoral results from Madrid’s 2021 regional elections
First, let’s get the election data:
# Electoral data
elections_raw <- data.table::fread(
"https://datos.comunidad.madrid/catalogo/dataset/08aac4de-ca28-4f9c-b45d-ef8457c4b5d2/resource/5e8cf4ad-b9f4-4ffd-a026-c27433e7815f/download/datos_electorales_elecciones_autonomicas_comunidad_de_madrid_2021.csv",
sep = ";",
encoding = "Latin-1"
) %>% as_tibble()
Now, let’s get income data for Madrid’s census tracts using
ineAtlas
:
We need to process the election data and merge it with our income data:
# Process election data to census tract level
elections_proc <- elections_raw %>%
select(PP, `P.S.O.E.`, distrito, seccion, cod_muni, votos_electores) %>%
rename(
pp = PP,
psoe = `P.S.O.E.`,
total_votes = votos_electores
) %>%
mutate(
cod_muni = str_pad(as.character(cod_muni), width = 3, pad = "0"),
distrito = str_pad(as.character(distrito), width = 2, pad = "0"),
seccion = str_pad(as.character(seccion), width = 3, pad = "0"),
tract_code = paste0("28", cod_muni, distrito, seccion),
share_pp = pp / total_votes,
share_psoe = psoe / total_votes,
tract_code = as.character(tract_code)
)
# Merge and prepare for plotting
plot_data <- elections_proc %>%
left_join(
income_data,
by = "tract_code"
) %>%
mutate(income_percentile = percent_rank(net_income_pc)) %>%
select(income_percentile, share_pp, share_psoe, total_votes) %>%
pivot_longer(
cols = c(share_pp, share_psoe),
names_to = "party",
values_to = "vote_share"
)
We’ll create a visualization showing how voting patterns vary with income levels across Madrid’s census tracts. In particular, we’ll focus on the vote share of the two main parties, the Popular Party (PP) and the Socialist Party (PSOE):
ggplot() +
geom_point(data = plot_data,
aes(x = income_percentile * 100,
y = vote_share * 100,
color = party),
size = plot_data$total_votes/200,
alpha = 0.2) +
geom_smooth(data = plot_data,
aes(x = income_percentile * 100,
y = vote_share * 100,
color = party),
method = "loess",
se = FALSE,
linewidth = 1.5) +
scale_color_manual(
values = c("share_pp" = "#0066CC", "share_psoe" = "#E31C1C"),
labels = c("share_pp" = "PP", "share_psoe" = "PSOE"),
name = NULL
) +
scale_y_continuous(labels = function(x) paste0(x, "%")) +
labs(
title = "Voting patterns and income at the census tract-level (Madrid, 2021)",
x = "Equivalised net income percentile",
y = "Vote share",
caption = "@pablogguz_ | The chart shows the percent of total votes by party within each census tract in the Madrid 2021 regional election.
Source: Regional Government of Madrid, Spanish Statistical Office and author's calculations."
) +
theme_minimal() +
theme(
text = element_text(family = "Open Sans", size = 16),
plot.title = element_text(size = 18, margin = margin(b = 20)),
plot.caption = element_textbox_simple(
size = 12,
color = "grey40",
margin = margin(t = 20),
hjust = 0 # This left-justifies the caption
),
legend.position = "top",
legend.justification = "left",
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank()
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.