The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Let’ s take the function: \[f (x) = \frac{\frac{1}{8}x+\frac{1}{2}x^2}{1+\frac{1}{8}x+\frac{1}{2}x^2}\] following [3]. What are the inflection points? We must take the first derivative: \[f'(x)= \frac {8+64\,x}{ \left( 4\,{x}^{2}+x+8 \right) ^{2}}\]
and continue to second derivative: \[f''(x)= \frac {-768\,{x}^{2}-192\,x+496}{ \left( 4\,{x}^{2}+x+8 \right) ^{3}}\] Now we must solve above expression for x and find two solutions: \[x_1=-1/8-1/24\,\sqrt {381}=-0.9383008876\] \[x_2=-1/8+1/24\,\sqrt {381}=0.6883008876\] If we study the function we’ll see that has a minimum at \(x_{min}=-\frac{1}{8}=-0.125\) and it is concave/convex at interval \(x<x_{min}\) and convex/concave for \(x>x_{min}\).
But what if we do not want to perform such an analytical approach? What if we just wanted the inflection points without more details?
Then we must follow next steps:
Here are the steps for the positive inflection point:
library(inflection)
f=function(x){(1/8*x+1/2*x^2)/(1+1/8*x+1/2*x^2)}
x=seq(0,5,0.1)
y=f(x)
# First approximation
cc=check_curve(x,y);cc
## $ctype
## [1] "convex_concave"
##
## $index
## [1] 0
## j1 j2 chi
## ESE 2 13 0.65
# New interval with equal distances from first approximation
x=seq(0,1.3,0.001)
y=f(x)
# Second approximation
cc=check_curve(x,y);cc
## $ctype
## [1] "convex_concave"
##
## $index
## [1] 0
## [1] 0.688
n | a | b | ESE |
---|---|---|---|
1301 | 0.000 | 1.300 | 0.8090 |
711 | 0.495 | 0.819 | 0.6570 |
325 | 0.627 | 0.794 | 0.7105 |
168 | 0.638 | 0.720 | 0.6790 |
83 | 0.673 | 0.714 | 0.6935 |
42 | 0.676 | 0.696 | 0.6860 |
21 | 0.684 | 0.694 | 0.6890 |
11 | 0.685 | 0.690 | 0.6875 |
6 | 0.687 | 0.689 | 0.6880 |
Since our interval was defined with equal size step 0.001 we expect our estimation to have the same accuracy and indeed it is truth.
If we wanted a better accuracy, for example with 4 digits, then we could define another interval with previous approximation inside it and with equal size stpe 0.0001:
There exist no problem.
Since ESE and EDE methods both give consistent estimators for the inflection point, we do not need to worry about noise.
Lets perform the same task with error added:
## $ctype
## [1] "convex_concave"
##
## $index
## [1] 0
## [1] 0.689
n | a | b | ESE |
---|---|---|---|
3001 | 0.000 | 3.000 | 0.6955 |
1034 | 0.473 | 0.993 | 0.7330 |
521 | 0.542 | 0.836 | 0.6890 |
If your data set gas million of cases, then EDE and BEDE are your best friends.
Lets see why by using 1000001 cases from a function with inflection point equal to 500:
## [1] 1000001
## j1 j2 chi
## EDE 496201 503801 500
## Time difference of 0.01299381 secs
## [1] 500
n | a | b | EDE |
---|---|---|---|
1000001 | 0.000 | 1000.000 | 500 |
7601 | 498.712 | 501.288 | 500 |
2577 | 499.341 | 500.659 | 500 |
1319 | 499.633 | 500.367 | 500 |
735 | 499.791 | 500.209 | 500 |
419 | 499.880 | 500.120 | 500 |
241 | 499.931 | 500.069 | 500 |
139 | 499.960 | 500.040 | 500 |
81 | 499.977 | 500.023 | 500 |
47 | 499.987 | 500.013 | 500 |
27 | 499.993 | 500.007 | 500 |
15 | 499.996 | 500.004 | 500 |
9 | 499.998 | 500.002 | 500 |
5 | 499.999 | 500.001 | 500 |
Situation will not change if we add error \(U(-50,50)\):
f=function(x){500+500*tanh(x-500)}
x=seq(0,1000,0.001)
set.seed(20190628)
y=f(x)+runif(length(x),-50,50)
length(x)
## [1] 1000001
## j1 j2 chi
## EDE 496208 503817 500.0115
## Time difference of 0.01699495 secs
## [1] 500.046
n | a | b | EDE |
---|---|---|---|
1000001 | 0.000 | 1000.000 | 500.0115 |
7610 | 498.815 | 501.277 | 500.0460 |
Even if our data are not symmetric, estimation will not change:
f=function(x){500+500*tanh(x-500)}
x=seq(0,700,0.001)
set.seed(20190628)
y=f(x)+runif(length(x),-50,50)
length(x)
## [1] 700001
## j1 j2 chi
## EDE 496208 503646 499.926
## Time difference of 0.009998083 secs
## [1] 500.013
n | a | b | EDE |
---|---|---|---|
700001 | 0.000 | 700.000 | 499.926 |
7439 | 498.829 | 501.197 | 500.013 |
Just try to solve above problems by using regression or other techniques that involve matrix inversion…
OK, we’ll perform that task for you.
# library(nlme)
# x=seq(0,5,0.1)
# f=function(x){(1/8*x+1/2*x^2)/(1+1/8*x+1/2*x^2)}
# y=f(x)
# df=data.frame("x"=x,"y"=y)
# Asym=1;xmid=1;scal=1;
# fmla=as.formula("y~SSlogis(x,Asym,xmid,scal)");fmla
# try(nls(fmla,df))
# est=try(nls(fmla,df))
# coef(est)
When it works it gives the result xmid=1.2516 which is away from true inflcetion (0.6883008876), altough all results seem to be statistically ‘super’:
# y ~ SSlogis(x, Asym, xmid, scal)
# Nonlinear regression model
# model: y ~ SSlogis(x, Asym, xmid, scal)
# data: df
# Asym xmid scal
# 0.8909 1.2516 0.5478
# residual sum-of-squares: 0.05242
#
# Number of iterations to convergence: 0
# Achieved convergence tolerance: 1.401e-06
###
# est=try(nls(fmla,df))
# coef(est)
# Asym xmid scal
# 0.8908913 1.2516410 0.5478263
# summary(est)
#
# Formula: y ~ SSlogis(x, Asym, xmid, scal)
#
# Parameters:
# Estimate Std. Error t value Pr(>|t|)
# Asym 0.890891 0.007872 113.18 <2e-16 ***
# xmid 1.251641 0.025638 48.82 <2e-16 ***
# scal 0.547826 0.023718 23.10 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.03305 on 48 degrees of freedom
#
# Number of iterations to convergence: 0
# Achieved convergence tolerance: 1.401e-06
# x=seq(0.0,3.,0.001)
# f=function(x){(1/8*x+1/2*x^2)/(1+1/8*x+1/2*x^2)}
# set.seed(20190628)
# y=f(x)+runif(length(x),-0.01,0.01)
# df=data.frame("x"=x,"y"=y)
# Asym=1;xmid=1;scal=1;
# fmla=as.formula("y~SSlogis(x,Asym,xmid,scal)");fmla
# try(nls(fmla,df))
When it works it gives next result xmid=1.0938 which is away from true inflcetion (0.6883008876) and again rsults seem to be ‘excellent’:
# Nonlinear regression model
# model: y ~ SSlogis(x, Asym, xmid, scal)
# data: df
# Asym xmid scal
# 0.8018 1.0938 0.4318
# residual sum-of-squares: 1.884
#
# Number of iterations to convergence: 0
# Achieved convergence tolerance: 1.768e-07
###
# est=try(nls(fmla,df))
# coef(est)
# Asym xmid scal
# 0.8018405 1.0937758 0.4318175
# summary(est)
#
# Formula: y ~ SSlogis(x, Asym, xmid, scal)
#
# Parameters:
# Estimate Std. Error t value Pr(>|t|)
# Asym 0.801840 0.001175 682.7 <2e-16 ***
# xmid 1.093776 0.002417 452.5 <2e-16 ***
# scal 0.431817 0.002063 209.3 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.02507 on 2998 degrees of freedom
#
# Number of iterations to convergence: 0
# Achieved convergence tolerance: 1.768e-07
We set as initial parameter (xmid) the true solution (500), but it failed to proceed:
# f=function(x){500+500*tanh(x-500)}
# x=seq(0,1000,0.001)
# y=f(x)
# length(x)
# df=data.frame("x"=x,"y"=y)
# Asym=1000;xmid=500;scal=1;
# fmla=as.formula("y~SSlogis(x,Asym,xmid,scal)");fmla
#
# t1=Sys.time();
# try(nls(fmla,df))
# Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data = xy, start = list(xmid = aux[[1L]], :
# step factor 0.000488281 reduced below 'minFactor' of 0.000976562
# t2=Sys.time();t2-t1
# Time difference of 19.29784 secs
So R package inflection can give you an answer for all extremely difficult cases.
[1] Demetris T. Christopoulos (2014), Developing methods for identifying the inflection point of a convex/concave curve. arXiv:1206.5478v2 [math.NA]. URL: https://doi.org/10.48550/arXiv.1206.5478
[2] Demetris T. Christopoulos (2016), On the Efficient Identification of an Inflection Point, International Journal of Mathematics and Scientific Computing , Volume 6 (1), June 2016, Pages 13-20, ISSN: 2231-5330. URL: https://veltech.edu.in/wp-content/uploads/2016/04/Paper-04-2016.pdf
[3] Bardsley, W. G. & Childs, R. E. Sigmoid curves, non-linear double-reciprocal plots and allosterism. Biochemical Journal, Portland Press Limited, 1975, 149, 313-328
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.