The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

influxdb-client-r

CircleCI codecov

This repository contains R package for InfluxDB 2.0 client.

Features

The InfluxDB 2.0 client supports:

Documentation

This section contains links to the client library documentation.

Installing

The package requires R >= 3.4.

Installing dependencies

install.packages(c("httr", "bit64", "nanotime", "plyr"))

Installing influxdbclient package

The package is published on CRAN and can be installed with

install.packages("influxdbclient")

The latest development version can be installed with

# install.packages("remotes")
remotes::install_github("influxdata/influxdb-client-r")

Usage

Client instantiation

library(influxdbclient)
client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org")

Parameters

Parameter Description Type Default
url InfluxDB instance URL character none
token authentication token character none
org organization name character none

Hint: to avoid SSL certificate validation errors when accessing InfluxDB instance over https such as SSL certificate problem: unable to get local issuer certificate, you can try to disable the validation using the following call before using any InfluxDBClient method. Warning: it will disable peer certificate validation for the current R session.

library(httr)
httr::set_config(config(ssl_verifypeer = FALSE))

Querying data

Use query method.

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org")
                            
data <- client$query('from(bucket: "my-bucket") |> range(start: -1h) |> drop(columns: ["_start", "_stop"])')
data

Flux query can yield multiple results in one response, where each result may contain multiple tables.
Return value is therefore a named list, where each element is a list of data frames that represent a result. Data frame represents Flux table. You can list the results using names method.

Quite often, though, there is just a single result and therefore the query by default flattens the return value to simple unnamed list of data frames. This behaviour controlled by flatSingleResult parameter. With flatSingleResult = FALSE, you can check that the return value contains one element with name "_result" (default result name when there is no explicit yield in the query) and use the name to retrieve it, like

> names(data)
[1] "_result"

> data[["_result"]]
[[1]]
                       time       name region sensor_id altitude grounded temperature
1 2021-06-09T09:52:41+00:00 airSensors  south   TLM0101      549    FALSE  71.7844100
2 2021-06-09T09:52:51+00:00 airSensors  south   TLM0101      547    FALSE  71.7684399
3 2021-06-09T09:53:01+00:00 airSensors  south   TLM0101      563     TRUE  71.7819928
4 2021-06-09T09:53:11+00:00 airSensors  south   TLM0101      560     TRUE  71.7487767
5 2021-06-09T09:53:21+00:00 airSensors  south   TLM0101      544    FALSE  71.7335579

Parameters

Parameter Description Type Default
text Flux query character none
POSIXctCol Flux time to POSIXct column mapping named list c("_time"="time")
flatSingleResult Whether to return simple list when response contains only one result logical TRUE

Incoming type mapping

Flux type R type
string character
int integer64
float numeric
bool logical
time nanotime

Using retrieved data as time series

Flux timestamps are parsed into nanotime (integer64 underneath) type, because R datetime types do not support nanosecond precision. nanotime is not a time-based object appropriate for creating a time series, though. By default, query coerces the _time column to time column of POSIXct type (see POSIXctCol parameter), with possible loss precision (which is unimportant in the context of R time series).

Select data of interest from the result like

# from the first data frame, pick subset containing `time` and `_value` columns only
df1 <- data[[1]][c("time", "_value")]

Then, a time series object can be created from the data frame, eg. using tsbox package:

ts1 <- ts_ts(ts_df(df1))

A data frame, or a time series object created from it, can be used for decomposition, anomaly detection etc, like

df1$`_value` %>% ts(freq=168) %>% stl(s.window=13) %>% autoplot()

or

ts1 %>% ts(freq=168) %>% stl(s.window=13) %>% autoplot()

Querying metadata

For queries returning records without time info (listing buckets, tag values etc.), set POSIXctCol to NULL.

buckets <- client$query('buckets()', POSIXctCol = NULL)

Writing data

Use write method.

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org")
data <- ...
response <- client$write(data, bucket = "my-bucket", precision = "us",
                         measurementCol = "name",
                         tagCols = c("region", "sensor_id"),
                         fieldCols = c("altitude", "temperature"),
                         timeCol = "time")

The example is valid for data.frame data like the following:

> print(data)
                       time       name region sensor_id altitude grounded temperature
1 2021-06-09T09:52:41+00:00 airSensors  south   TLM0101      549    FALSE  71.7844100
2 2021-06-09T09:52:51+00:00 airSensors  south   TLM0101      547    FALSE  71.7684399
3 2021-06-09T09:53:01+00:00 airSensors  south   TLM0101      563     TRUE  71.7819928
4 2021-06-09T09:53:11+00:00 airSensors  south   TLM0101      560     TRUE  71.7487767
5 2021-06-09T09:53:21+00:00 airSensors  south   TLM0101      544    FALSE  71.7335579

> str(data)
'data.frame':   5 obs. of  7 variables:
 $ time       :integer64 1623232361000000000 1623232371000000000 1623232381000000000 1623232391000000000 1623232401000000000
 $ name       : chr  "airSensors" "airSensors" "airSensors" "airSensors" ...
 $ region     : chr  "south" "south" "south" "south" ...
 $ sensor_id  : chr  "TLM0101" "TLM0101" "TLM0101" "TLM0101" ...
 $ altitude   :integer64 549 547 563 560 544
 $ grounded   : logi  FALSE FALSE TRUE TRUE FALSE
 $ temperature: num  71.8 71.8 71.8 71.7 71.7

Parameters

Parameter Description Type Default
x data data.frame (or list of) none
bucket target bucket name character none
batchSize batch size numeric 5000
precision timestamp precision character (one of s, ms, us, ns) "ns"
measurementCol measurement column name character "_measurement"
tagCols tags column names character NULL
fieldCols fields column names character c("_field"="_value")
timeCol time column name character "_time"
object output object character NULL

Supported time column value types: nanotime, POSIXct. To write data points without timestamp, set timeCol to NULL. See Timestamp precision for details.

Response is either NULL on success, or errorr otherwise.

Note: default fieldCols value is suitable for writing back unpivoted data retrieved from InfluxDB before. For usual tables (“pivoted” in Flux world), fieldCols should be unnamed list, eg. c("humidity", "temperature", ...).

Outgoing type mapping

R type InfluxDB type
character string
integer, integer64 int
numeric float
logical bool
nanotime, POSIXct time

Output preview

To preview how input data are serialized to InfluxDB line protocol, pass the name of object to receive the output as object parameter value.
It changes write to dry-run operation (nothing is sent to the database). The object will be assigned to the calling environment.
This option is intended for debugging purposes.

data <- ...
response <- client$write(data, bucket = "my-bucket", precision = "us",
                         measurementCol = "name",
                         tagCols = c("region", "sensor_id"),
                         fieldCols = c("altitude", "temperature"),
                         timeCol = "time",
                         object = "lp")
lp

Sample output:

> print(lp)
[[1]]
[1] "airSensors,region=south,sensor_id=TLM0101 altitude=549i,temperature=71.7844100 1623232361000000"
[2] "airSensors,region=south,sensor_id=TLM0101 altitude=547i,temperature=71.7684399 1623232371000000"
[3] "airSensors,region=south,sensor_id=TLM0101 altitude=563i,temperature=71.7819928 1623232381000000"
[4] "airSensors,region=south,sensor_id=TLM0101 altitude=560i,temperature=71.7487767 1623232391000000"
[5] "airSensors,region=south,sensor_id=TLM0101 altitude=544i,temperature=71.7335579 1623232401000000"

Write retrying

By default, client will not retry failed writes. To instantiate a client with retry support, pass an instance of RetryOptions, eg:

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org",
                             retryOptions = RetryOptions$new(maxAttempts = 3))

For retry strategy with default options just pass TRUE as retryOptions parameter value:

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org",
                             retryOptions = TRUE)

Retryable InfluxDB write errors are 429 and 503 status codes. The retry strategy implements exponential backoff algorithm, customizable with RetryOptions.

Getting status

Health status

Use health method to get the health status.

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org")

check <- client$health()

Response is list with health information elements (name, status, version, commit) or error.

Readiness status

Use ready method to get the readiness status.

client <- InfluxDBClient$new(url = "http://localhost:8086",
                             token = "my-token",
                             org = "my-org")

check <- client$ready()

Response is a list with status elements (status, started, up) or error.

Advanced

The client automatically follows HTTP redirects.

To use the client with proxy, use set_config to configure the proxy:

library(httr)
httr::set_config(
  use_proxy(url = "my-proxy", port = 8080, username = "user",password = "password")
)

Known Issues

Contributing

Contributions are most welcome. The fastest way to get something fixed is to open a PR.

License

The client is available as open source under the terms of the MIT License.

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.