The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

influxdbr

CRAN_Status_Badge Build Status

R interface to InfluxDB

This package allows you to fetch and write time series data from/to an InfluxDB server. Additionally, handy wrappers for the Influx Query Language (IQL) to manage and explore a remote database are provided.

Installation

Installation is easy thanks to CRAN:

install.packages("influxdbr")

You can install the dev version from github with:

# install.packages("remotes")
remotes::install_github("dleutnant/influxdbr@dev")

Example

This is a basic example which shows you how to communicate (i.e. query and write data) with the InfluxDB server.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(influxdbr)
library(xts)
#> Loading required package: zoo
#> 
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#> 
#>     as.Date, as.Date.numeric
#> 
#> Attaching package: 'xts'
#> The following objects are masked from 'package:dplyr':
#> 
#>     first, last

Let’s create first some sample data from the xts package and assign arbitrary attributes:

# attach data "sample_matrix"
data("sample_matrix")

# create xts object
xts_data <- xts::as.xts(x = sample_matrix)

# assign some attributes
xts::xtsAttributes(xts_data) <- list(info = "SampleDataMatrix",
                                     UnitTesting = TRUE, 
                                     n = 180,
                                     source = "xts")
                                     
# print structure to inspect the object
str(xts_data)
#> An 'xts' object on 2007-01-02/2007-06-30 containing:
#>   Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : NULL
#>   ..$ : chr [1:4] "Open" "High" "Low" "Close"
#>   Indexed by objects of class: [POSIXct,POSIXt] TZ: 
#>   xts Attributes:  
#> List of 4
#>  $ info       : chr "SampleDataMatrix"
#>  $ UnitTesting: logi TRUE
#>  $ n          : num 180
#>  $ source     : chr "xts"

InfluxDB connection

To connect to an InfluxDB server, we need a connection object. A connection object can be created by providing usual server details (e.g. host, port, …) or with help of a group file, which conveniently holds all information for us (s. package documentation):

# create connection object 
# (here: based on a config file with group "admin" in it (s. package documentation))
con <- influx_connection(group = "admin")
#> Success: (204) No Content

The influxdbr package provides handy wrappers to manage a remote InfluxDB:

# create new database
create_database(con = con, db = "mydb")

# list all databases
show_databases(con = con)
#> # A tibble: 10 x 1
#>    name      
#>    <chr>     
#>  1 _internal 
#>  2 stbmod    
#>  3 wasig     
#>  4 wasig-fr  
#>  5 wasig-h   
#>  6 test      
#>  7 oscar_test
#>  8 longterm  
#>  9 deznwba   
#> 10 mydb

Write data

xts

Writing an xts-object to the server can be achieved with influx_write. In this case, columnnames of the xts object are used as InfluxDB’s field keys, xts’s coredata represent field values. Attributes are preserved and written as tag keys and values, respectively.

# write example xts-object to database
influx_write(con = con, 
             db = "mydb",
             x = xts_data, 
             measurement = "sampledata")

data.frame

Writing a data.frame (or tibble) to the server can also be achieved with influx_write. In this case, we need to specify which columns of the data.frame represent time and tags. Fields are automatically determined.Each row represents a unique data point. NA’s are not supported and need to be removed. Timestamps should be located in column time.

Remember that time and tags are optional: InfluxDB uses the server’s local nanosecond timestamp in UTC if the timestamp is not included with the point.

# convert the existing xts-object to data.frame
df_data <- dplyr::bind_cols(time = zoo::index(xts_data), # timestamp
                            data.frame(xts_data)) %>% # coredata
  dplyr::mutate(info = "SampleDataMatrix", # add tag 'info'
                UnitTesting = TRUE, # add tag 'UnitTesting'
                n = row_number(), # add tag 'n'
                source = "df")  # add source 'df'

df_data
#> # A tibble: 180 x 9
#>    time                 Open  High   Low Close info     UnitT…     n sour…
#>    <dttm>              <dbl> <dbl> <dbl> <dbl> <chr>    <lgl>  <int> <chr>
#>  1 2007-01-02 00:00:00  50.0  50.1  50.0  50.1 SampleD… T          1 df   
#>  2 2007-01-03 00:00:00  50.2  50.4  50.2  50.4 SampleD… T          2 df   
#>  3 2007-01-04 00:00:00  50.4  50.4  50.3  50.3 SampleD… T          3 df   
#>  4 2007-01-05 00:00:00  50.4  50.4  50.2  50.3 SampleD… T          4 df   
#>  5 2007-01-06 00:00:00  50.2  50.2  50.1  50.2 SampleD… T          5 df   
#>  6 2007-01-07 00:00:00  50.1  50.2  50.0  50.0 SampleD… T          6 df   
#>  7 2007-01-08 00:00:00  50.0  50.1  50.0  50.0 SampleD… T          7 df   
#>  8 2007-01-09 00:00:00  50.0  50.0  49.8  49.9 SampleD… T          8 df   
#>  9 2007-01-10 00:00:00  49.9  50.1  49.9  50.0 SampleD… T          9 df   
#> 10 2007-01-11 00:00:00  49.9  50.2  49.9  50.2 SampleD… T         10 df   
#> # ... with 170 more rows

# write example data.frame to database
influx_write(con = con, 
             db = "mydb",
             x = df_data,
             time_col = "time", tag_cols = c("info", "UnitTesting", "n", "source"),
             measurement = "sampledata")

We can now check if the time series were succefully written:

# check if measurements were succefully written
show_measurements(con = con, db = "mydb")
#> # A tibble: 1 x 1
#>   name      
#>   <chr>     
#> 1 sampledata

Query data

To query the database, two functions influx_query and influx_select are available. influx_select wraps around influx_query and can be useful for simple requests because it provides default query parameters. The return type can be configured to be of class tibble or of class xts.

Return tibbles

If return_xts = FALSE a list of tibbles per query statement is returned. Each tibble contains columns with statement_id, series_names, tags, time and fields.

# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con, 
                        db = "mydb", 
                        field_keys = "Open, High", 
                        measurement = "sampledata",
                        where = "source = 'df'",
                        group_by = "*",
                        limit = 10, 
                        order_desc = TRUE, 
                        return_xts = FALSE)

result
#> [[1]]
#> # A tibble: 180 x 10
#>    state… serie… serie… Unit… info   n     sour… time                 Open
#>     <int> <chr>  <lgl>  <chr> <chr>  <chr> <chr> <dttm>              <dbl>
#>  1      0 sampl… F      TRUE  Sampl… 99    df    2007-04-09 22:00:00  49.6
#>  2      0 sampl… F      TRUE  Sampl… 98    df    2007-04-08 22:00:00  49.4
#>  3      0 sampl… F      TRUE  Sampl… 97    df    2007-04-07 22:00:00  49.5
#>  4      0 sampl… F      TRUE  Sampl… 96    df    2007-04-06 22:00:00  49.5
#>  5      0 sampl… F      TRUE  Sampl… 95    df    2007-04-05 22:00:00  49.3
#>  6      0 sampl… F      TRUE  Sampl… 94    df    2007-04-04 22:00:00  49.4
#>  7      0 sampl… F      TRUE  Sampl… 93    df    2007-04-03 22:00:00  49.2
#>  8      0 sampl… F      TRUE  Sampl… 92    df    2007-04-02 22:00:00  49.1
#>  9      0 sampl… F      TRUE  Sampl… 91    df    2007-04-01 22:00:00  48.9
#> 10      0 sampl… F      TRUE  Sampl… 90    df    2007-03-31 22:00:00  48.9
#> # ... with 170 more rows, and 1 more variable: High <dbl>

Return xts

If return_xts = TRUE a list of xts objects per query statement is returned. Because xts objects are basically matrices (which can store one data type only), a single xts object is created for each InfluxDB field. This ensures a correct representation of the field values data type (instead of getting all into a “character” matrix). InfluxDB tags are now xts attributes.

# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con, 
                        db = "mydb", 
                        field_keys = "Open, High", 
                        measurement = "sampledata",
                        where = "source = 'xts'",
                        group_by =  "*",
                        limit = 10, 
                        order_desc = TRUE, 
                        return_xts = TRUE)

str(result)
#> List of 1
#>  $ :List of 2
#>   ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#>   Data: num [1:10, 1] 47.7 47.6 47.2 47.2 47.2 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : NULL
#>   ..$ : chr "Open"
#>   Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#>   xts Attributes:  
#> List of 7
#>   .. ..$ statement_id  : int 0
#>   .. ..$ series_names  : chr "sampledata"
#>   .. ..$ series_partial: logi FALSE
#>   .. ..$ UnitTesting   : chr "TRUE"
#>   .. ..$ info          : chr "SampleDataMatrix"
#>   .. ..$ n             : chr "180"
#>   .. ..$ source        : chr "xts"
#>   ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#>   Data: num [1:10, 1] 47.7 47.6 47.2 47.3 47.4 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : NULL
#>   ..$ : chr "High"
#>   Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#>   xts Attributes:  
#> List of 7
#>   .. ..$ statement_id  : int 0
#>   .. ..$ series_names  : chr "sampledata"
#>   .. ..$ series_partial: logi FALSE
#>   .. ..$ UnitTesting   : chr "TRUE"
#>   .. ..$ info          : chr "SampleDataMatrix"
#>   .. ..$ n             : chr "180"
#>   .. ..$ source        : chr "xts"

Simplify InfluxDB response

In case the InfluxDB response is expected to be a single series only, we can flatten the list (simplifyList = TRUE) to directly get to the data. This enhances a pipeable work flow.

result <- influx_select(con = con, 
                        db = "mydb", 
                        field_keys = "Open", 
                        measurement = "sampledata",
                        where = "source = 'df'",
                        group_by =  "*",
                        limit = 10, 
                        order_desc = TRUE, 
                        return_xts = FALSE, 
                        simplifyList = TRUE)

str(result)
#> List of 1
#>  $ :Classes 'tbl_df', 'tbl' and 'data.frame':    180 obs. of  9 variables:
#>   ..$ statement_id  : int [1:180] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..$ series_names  : chr [1:180] "sampledata" "sampledata" "sampledata" "sampledata" ...
#>   ..$ series_partial: logi [1:180] FALSE FALSE FALSE FALSE FALSE FALSE ...
#>   ..$ UnitTesting   : chr [1:180] "TRUE" "TRUE" "TRUE" "TRUE" ...
#>   ..$ info          : chr [1:180] "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" ...
#>   ..$ n             : chr [1:180] "99" "98" "97" "96" ...
#>   ..$ source        : chr [1:180] "df" "df" "df" "df" ...
#>   ..$ time          : POSIXct[1:180], format: "2007-04-09 22:00:00" ...
#>   ..$ Open          : num [1:180] 49.6 49.4 49.5 49.5 49.3 ...

Contributions

This Git repository uses the Git Flow branching model (the git flow extension is useful for this). The dev branch contains the latest contributions and other code that will appear in the next release, and the master branch contains the code of the latest release, which is exactly what is currently on CRAN.

Contributing to this package is easy. Just send a pull request. When you send your PR, make sure dev is the destination branch on the influxdbr repository. Your PR should pass R CMD check --as-cran, which will also be checked by Travis CI when the PR is submitted.

Code of conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Citation

To cite package ‘influxdbr’ in publications use:

Dominik Leutnant (2018). influxdbr: R Interface to InfluxDB. R package version 0.14.2. https://github.com/dleutnant/influxdbr

A BibTeX entry for LaTeX users is

@Manual{, title = {influxdbr: R Interface to InfluxDB}, author = {Dominik Leutnant}, year = {2018}, note = {R package version 0.14.2}, url = {https://github.com/dleutnant/influxdbr}, }

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.