The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Broad-sense heritability (\(H^2\)) is defined as the proportion of phenotypic variance that is attributable to an overall genetic variance for the genotype (Schmidt et al., 2019b). There are usually additional interpretations associated with \(H^2\): (i) It is equivalent to the coefficient of determination of a linear regression of the unobservable genotypic value on the observed phenotype; (ii) It is also the squared correlation between predicted phenotypic value and genotypic value; and (iii) It represents the proportion of the selection differential (\(S\)) that can be realized as the response to selection (\(R\)) (Falconer and Mackay, 2005).
There are two main reasons why heritability on an entry-mean basis is of interest in plant breeding (Schmidt et al., 2019a):
\[\Delta G=H^2S\] Where:
In practice, most trials are conducted in a multienvironment trial (MET) presente unbalanced data as not all cultivars are tested at each environment or simply when plot data is lost or when the number of replicates at each location varies between genotypes (Schmidt et al., 2019b). However, the standard method for estimating heritability implicitly assumes balanced data, independent genotype effects, and homogeneous variances.
According Schmidt et al. (2019a), the variance components could be calculated in two ways:
For the two stage approach, in the first stage each experiment is analyzed individually according their experiment design (Lattice, CRBD, etc) (Zystro et al., 2018). And for the second stage environments are denotes a year-by-location interaction. This approach assumes a single variance for genotype-by-environment interactions (GxE), even when multiple locations were tested across multiple years (Buntaran et al., 2020).
\[y_{ikt}=\mu\ +\ G_i+E_t+GxE_{it}+\varepsilon_{ikt}\]
\[\sigma_p^2=\sigma_g^2+\frac{\sigma_{g\cdot e}^2}{n_e}+\frac{\sigma_{\varepsilon}^2}{n_e\cdot n_r}\]
For the one stage approach only one model is used for the MET analysis. The environmental effects are included via separate year, and location main interaction effects.
\[y_{ikt}=\mu+G_i+Y_m+E_q+YxE_{mq}+GxY_{im}+GxE_{iq}+GxYxE_{imq}+\varepsilon_{ikmq}\]
\[\sigma_p^2=\sigma_g^2+\frac{\sigma_{g\cdot e}^2}{n_e}+\frac{\sigma_{g\cdot y}^2}{n_y}+\frac{\sigma_{g\cdot y\cdot e}^2}{n_y\cdot n_e}+\ \frac{\sigma_{\epsilon}^2}{n_e\cdot n_y\cdot n_r}\]
Standart | Cullis | Piepho |
---|---|---|
\(H^2=\frac{\sigma_g^2}{\sigma_p^2}=\frac{\Delta G}{S}\) | \(H_{Cullis}^2=1-\frac{\overline{V}_{\Delta..}^{^{BLUP}}}{2\cdot\sigma_g^2}\) | \(H_{Piepho}^2=\frac{\sigma_g^2}{\sigma_g^2+\frac{\overline{V}_{\Delta..}^{BLUE}}{2}}\) |
For calculate the standard heritability in MET experiments the number of location and replication should be include manually in the function H2cal()
. In the case of difference number of replication in each experiments, take the maximum value (often done in practice) (Schmidt et al., 2019b).
For remove the outliers the function implemented is the Method 4 used for Bernal-Vasquez et al. (2016): Bonferroni-Holm using re-scaled MAD for standardizing residuals (BH-MADR).
hr$model %>% summary()
## Linear mixed model fit by REML ['lmerMod']
## Formula: stemdw ~ 1 + (1 | bloque) + (1 | geno)
## Data: dt.rm
## Weights: weights
##
## REML criterion at convergence: 796.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.38440 -0.64247 -0.08589 0.57452 2.84508
##
## Random effects:
## Groups Name Variance Std.Dev.
## geno (Intercept) 19.960 4.4677
## bloque (Intercept) 0.110 0.3316
## Residual 9.411 3.0677
## Number of obs: 148, groups: geno, 15; bloque, 5
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 12.51 1.19 10.51
trait | rep | geno | env | year | mean | std | min | max | V.g | V.e | V.p | repeatability | H2.s | H2.p | H2.c |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
stemdw | 5 | 15 | 1 | 1 | 12.59867 | 4.749994 | 2.818 | 22.302 | 19.96002 | 9.410932 | 21.84221 | 0.913828 | 0.913828 | 0.9502395 | 0.9533473 |
geno | stemdw | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
G01 | 15.73200 | 1.030325 | 119.7830 | 13.6919903 | 17.77201 |
G02 | 10.12100 | 1.030325 | 119.7830 | 8.0809903 | 12.16101 |
G03 | 9.69500 | 1.030325 | 119.7830 | 7.6549903 | 11.73501 |
G04 | 15.17700 | 1.030325 | 119.7830 | 13.1369903 | 17.21701 |
G05 | 12.87106 | 1.086433 | 122.5189 | 10.7204483 | 15.02167 |
G06 | 22.30200 | 1.030325 | 119.7830 | 20.2619903 | 24.34201 |
G07 | 2.81800 | 1.030325 | 119.7830 | 0.7779903 | 4.85801 |
G08 | 10.42300 | 1.030325 | 119.7830 | 8.3829903 | 12.46301 |
G09 | 15.66800 | 1.030325 | 119.7830 | 13.6279903 | 17.70801 |
G10 | 9.24200 | 1.030325 | 119.7830 | 7.2019903 | 11.28201 |
G11 | 6.42500 | 1.030325 | 119.7830 | 4.3849903 | 8.46501 |
G12 | 16.11100 | 1.030325 | 119.7830 | 14.0709903 | 18.15101 |
G13 | 14.62900 | 1.030325 | 119.7830 | 12.5889903 | 16.66901 |
G14 | 16.29700 | 1.030325 | 119.7830 | 14.2569903 | 18.33701 |
G15 | 11.46900 | 1.030325 | 119.7830 | 9.4289903 | 13.50901 |
geno | stemdw |
---|---|
G01 | 15.587018 |
G02 | 10.228658 |
G03 | 9.821839 |
G04 | 15.057007 |
G05 | 12.843686 |
G06 | 20.631268 |
G07 | 3.254483 |
G08 | 10.517060 |
G09 | 15.525899 |
G10 | 9.389236 |
G11 | 6.699074 |
G12 | 15.948953 |
G13 | 14.533681 |
G14 | 16.126578 |
G15 | 11.515963 |
bloque | geno | stemdw | resi | res_MAD | rawp.BHStud | index | adjp | bholm | out_flag | |
---|---|---|---|---|---|---|---|---|---|---|
68 | IV | G05 | 80.65 | 60.36709 | 18.84505 | 0 | 68 | 0 | 0 | OUTLIER |
bloque | geno | stemdw | resi | res_MAD | rawp.BHStud | index | adjp | bholm | out_flag | |
---|---|---|---|---|---|---|---|---|---|---|
68 | IV | G05 | 80.65 | 61.39925 | 18.886677 | 0.0000000 | 68 | 0.0000000000 | 0.0000000 | OUTLIER |
100 | IV | G06 | 33.52 | 12.02340 | 3.698449 | 0.0002169 | 100 | 0.0002169207 | 0.0323212 | OUTLIER |
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.