The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

irtQ

The goal of irtQ is to fit unidimensional item response theory (IRT) models to mixture of dichotomous and polytomous data, calibrate online item parameters (i.e., pretest and operational items), estimate examinees abilities, and examine the IRT model-data fit on item-level in different ways as well as provide useful functions related to IRT analyses.

For the item parameter estimation, the marginal maximum likelihood estimation with expectation-maximization (MMLE-EM) algorithm (Bock & Aitkin, 1981) is used. For the online calibration, the fixed item parameter calibration (FIPC) method (e.g., Kim, 2006) and the fixed ability parameter calibration (FAPC) method (Ban, Hanson, Wang, Yi, & Harris, 2001; stocking, 1988), often called Stocking’s Method A, are provided. For the ability estimation, several popular scoring methods (e.g., MLE, EAP, and MAP) are implemented. In terms of assessing the IRT model-data fit, one of distinguished features of this package is that it gives not only item fit statistics (e.g., chi-square fit statistic (X2; e.g., Bock, 1960; Yen, 1981), likelihood ratio chi-square fit statistic (G2; McKinley & Mills, 1985), infit and outfit statistics (Ames et al., 2015), and S-X2 (Orlando & Thissen, 2000, 2003)) but also graphical displays to look at residuals between the observed data and model-based predictions (Hambleton, Swaminathan, & Rogers, 1991).

In addition, there are many useful functions such as analyzing differential item functioning (DIF), computing asymptotic variance-covariance matrices of item parameter estimates, importing item and/or ability parameters from popular IRT software, running flexMIRT (Cai, 2017) through R, generating simulated data, computing the conditional distribution of observed scores using the Lord-Wingersky recursion formula, computing item and test information functions, computing item and test characteristic curve functions, and plotting item and test characteristic curves and item and test information functions.

Installation

You can install the released version of irtQ from CRAN with:

install.packages("irtQ")

1. Online item calibration with the fixed item parameter calibration (FIPC) method (e.g., Kim, 2006)

The fixed item parameter calibration (FIPC) is one of useful online item calibration methods for computerized adaptive testing (CAT) to put the parameter estimates of pretest items on the same scale of operational item parameter estimates without post hoc linking/scaling (Ban, Hanson, Wang, Yi, & Harris, 2001; Chen & Wang, 2016). In FIPC, the operational item parameters are fixed to estimate the characteristic of the underlying latent variable prior distribution when calibrating the pretest items. More specifically, the underlying latent variable prior distribution of the operational items is estimated during the calibration of the pretest items to put the item parameters of the pretest items on the scale of the operational item parameters (Kim, 2006). In irtQ package, FIPC is implemented with two main steps:

  1. Prepare a response data set and the item metadata of the fixed (or operational) items.
  2. Implement FIPC to estimate the item parameters of pretest items using the est_irt() function.

(1) Preparing a data set

To run the est_irt() function, it requires two data sets:

  1. Item metadata set (i.e., model, score category, and item parameters. see the desciption of the argument x in the function est_irt).
  2. Examinees’ response data set for the items. It should be a matrix format where a row and column indicate the examinees and the items, respectively. The order of the columns in the response data set must be exactly the same as the order of rows of the item metadata.

(2) Estimating the pretest item parameters

When FIPC is implemented in est_irt() function, the pretest item parameters are estimated by fixing the operational item parameters. To estimate the item parameters, you need to provide the item metadata in the argument x and the response data in the argument data.

It is worthwhile to explain about how to prepare the item metadata set in the argument x. A specific form of a data frame should be used for the argument x. The first column should have item IDs, the second column should contain the number of score categories of the items, and the third column should include IRT models. The available IRT models are “1PLM”, “2PLM”, “3PLM”, and “DRM” for dichotomous items, and “GRM” and “GPCM” for polytomous items. Note that “DRM” covers all dichotomous IRT models (i.e, “1PLM”, “2PLM”, and “3PLM”) and “GRM” and “GPCM” represent the graded response model and (generalized) partial credit model, respectively. From the fourth column, item parameters should be included. For dichotomous items, the fourth, fifth, and sixth columns represent the item discrimination (or slope), item difficulty, and item guessing parameters, respectively. When “1PLM” or “2PLM” is specified for any items in the third column, NAs should be inserted for the item guessing parameters. For polytomous items, the item discrimination (or slope) parameters should be contained in the fourth column and the item threshold (or step) parameters should be included from the fifth to the last columns. When the number of categories differs between items, the empty cells of item parameters should be filled with NAs. See est_irt for more details about the item metadata.

Also, you should specify in the argument fipc = TRUE and a specific FIPC method in the argument fipc.method. Finally, you should provide a vector of the location of the items to be fixed in the argument fix.loc. For more details about implementing FIPC, see the description of the est_irt() function.

When implementing FIPC, you can estimate both the emprical histogram and the scale of latent variable prior distribution by setting EmpHist = TRUE. If EmpHist = FALSE, the normal prior distribution is used during the item parameter estimation and the scale of the normal prior distribution is updated during the EM cycle.

If necessary, you need to specify whether prior distributions of item slope and guessing parameters (only for the IRT 3PL model) are used in the arguments of use.aprior and use.gprior, respectively. If you decide to use the prior distributions, you should specify what distributions will be used for the prior distributions in the arguments of aprior and gprior, respectively. Currently three probability distributions of Beta, Log-normal, and Normal distributions are available.

In addition, if the response data include missing values, you must indicate the missing value in argument missing.

Once the est_irt() function has been implemented, you’ll get a list of several internal objects such as the item parameter estimates, standard error of the parameter estimates.

2. Online item calibration with the fixed ability parameter calibration method (e.g., Stocking, 1988)

In CAT, the fixed ability parameter calibration (FAPC), often called Stocking’s Method A, is the relatively simplest and most straightforward online calibration method, which is the maximum likelihood estimation of the item parameters given the proficiency estimates. In CAT, FAPC can be used to put the parameter estimates of pretest items on the same scale of operational item parameter estimates and recalibrate the operational items to evaluate the parameter drifts of the operational items (Chen & Wang, 2016; Stocking, 1988). Also, FAPC is known to result in accurate, unbiased item parameters calibration when items are randomly rather than adaptively administered to examinees, which occurs most commonly with pretest items (Ban et al., 2001; Chen & Wang, 2016). Using irtQ package, the FAPC is implemented to calibrate the items with two main steps:

  1. Prepare a data set for the calibration of item parameters (i.e., item response data and ability estimates).
  2. Implement the FAPC to estimate the item parameters using the est_item() function.

(1) Preparing a data set

To run the est_item() function, it requires two data sets:

  1. Examinees’ ability (or proficiency) estimates. It should be in the format of a numeric vector.
  2. Examinees’ response data set for the items. It should be in the format of matrix where a row and column indicate the examinees and the items, respectively. The order of the examinees in the response data set must be exactly the same as that of the examinees’ ability estimates.

(2) Estimating the pretest item parameters

The est_item() function estimates the pretest item parameters given the proficiency estimates. To estimate the item parameters, you need to provide the response data in the argument data and the ability estimates in the argument score.

Also, you should provide a string vector of the IRT models in the argument model to indicate what IRT model is used to calibrate each item. Available IRT models are “1PLM”, “2PLM”, “3PLM”, and “DRM” for dichotomous items, and “GRM” and “GPCM” for polytomous items. “GRM” and “GPCM” represent the graded response model and (generalized) partial credit model, respectively. Note that “DRM” is considered as “3PLM” in this function. If a single character of the IRT model is specified, that model will be recycled across all items.

The est_item() function requires a vector of the number of score categories for the items in the argument cats. For example, a dichotomous item has two score categories. If a single numeric value is specified, that value will be recycled across all items. If NULL and all items are binary items (i.e., dichotomous items), it assumes that all items have two score categories.

If necessary, you need to specify whether prior distributions of item slope and guessing parameters (only for the IRT 3PL model) are used in the arguments of use.aprior and use.gprior, respectively. If you decide to use the prior distributions, you should specify what distributions will be used for the prior distributions in the arguments of aprior and gprior, respectively. Currently three probability distributions of Beta, Log-normal, and Normal distributions are available.

In addition, if the response data include missing values, you must indicate the missing value in argument missing.

Once the est_item function has been implemented, you’ll get a list of several internal objects such as the item parameter estimates, standard error of the parameter estimates.

3. The process of evaluating the IRT model-data fit

One way to assess goodness of IRT model-data fit is through an item fit analysis by examining the traditional item fit statistics and looking at the discrepancy between the observed data and model-based predictions. Using irtQ package, the traditional approach of evaluating the IRT model-data fit on item-level can be implemented with three main steps:

  1. Prepare a data set for the IRT item fit analysis (i.e., item metadata, ability estimates, and response data).
  2. Obtain the IRT fit statistics such as the X2, G2, infit, and outfit statistics using the irtfit() function.
  3. Based on the results of IRT model fit analysis (i.e., an object of class irtfit) obtained in step 2, draw the IRT residual plots (i.e., raw residual and standardized residual plots) using plot method.

(1) Preparing a data set

Before conducting the IRT model fit analysis, it is necessary to prepare a data set. To run the irtfit() function, it requires three data sets:

  1. Item metadata including the item ID, number of score categories, IRT models, and item parameters. The item metadata should be in the format of data frame. You can prepare the data either by using the shape_df() function or by creating a data frame of the item metadata by yourself. If you have output files of item parameter estimates obtained from one of the IRT software such as BILOG-MG 3, PARSCALE 4, flexMIRT, and mirt (R package), the item metadata can be easily obtained using the functions of bring.bilog(), bring.parscale(), bring.flexmirt(), bring.mirt(). See the functions of irtfit(), test.info(), or simdat() for more details about the item metadata format.
  2. Examinees’ ability (or proficiency) estimates. It should be in the format of a numeric vector.
  3. Examinees’ response data set for the items. It should be in the format of matrix where a row and column indicate the examinees and the items, respectively. The order of the examinees in the response data set must be exactly the same as that of the examinees’ ability estimates. The order of the items in the response data set must be exactly the same as that of the items in the item metadata.

(2) Computing the IRT model-data fit statistics

The irtfit() function computes the traditional IRT item fit statistics such as X2, G2, infit, and outfit statistics. To calculate the X2 and G2 statistics, two methods are available to divide the ability scale into several groups. The two methods are “equal.width” for dividing the scale by an equal length of the interval and “equal.freq” for dividing the scale by an equal frequency of examinees. Also, you need to specify the location of ability point at each group (or interval) where the expected probabilities of score categories are calculated from the IRT models. Available locations are “average” for computing the expected probability at the average point of examinees’ ability estimates in each group and “middle” for computing the expected probability at the midpoint of each group.

To use the irtfit() function, you need to insert the item metadata in the argument x, the ability estimates in the argument score, and the response data in the argument data. If you want to divide the ability scale into other than ten groups, you need to specify the number of groups in the argument n.width. In addition, if the response data include missing values, you must indicate the missing value in argument missing.

Once the irtfit() function has been implemented, you’ll get the fit statistic results and the contingency tables for every item used to calculate the X2 and G2 fit statistics.

(3) Drawing the IRT residual plots

Using the saved object of class irtfit, you can use the plot method to evaluate the IRT raw residual and standardized residual plots.

Because the plot method can draw the residual plots for an item at a time, you have to indicate which item will be examined. For this, you can specify an integer value, which is the location of the studied item, in the argument item.loc.

In terms of the raw residual plot, the argument ci.method is used to select a method to estimate the confidence intervals among four methods. Those methods are “wald” for the Wald interval, which is based on the normal approximation (Laplace, 1812), “cp” for Clopper-Pearson interval (Clopper & Pearson, 1934), “wilson” for Wilson score interval (Wilson, 1927), and “wilson.cr” for Wilson score interval with continuity correction (Newcombe, 1998).

3. Examples of implementing online calibration and evaluating the IRT model-data fit

library("irtQ")

## ----------------------------------------------------------------------------
# 1. The example code below shows how to prepare the data sets and how to
#    implement the fixed item parameter calibration (FIPC):
## ----------------------------------------------------------------------------

## Step 1: prepare a data set
## In this example, we generated examinees' true proficiency parameters and simulated
## the item response data using the function "simdat".

## import the "-prm.txt" output file from flexMIRT
flex_sam <- system.file("extdata", "flexmirt_sample-prm.txt", package = "irtQ")

# select the item metadata
x <- bring.flexmirt(file = flex_sam, "par")$Group1$full_df

# generate 1,000 examinees' latent abilities from N(0.4, 1.3)
set.seed(20)
score <- rnorm(1000, mean = 0.4, sd = 1.3)

# simulate the response data
sim.dat <- simdat(x = x, theta = score, D = 1)

## Step 2: Estimate the item parameters
# fit the 3PL model to all dichotmous items, fit the GRM model to all polytomous data,
# fix the five 3PL items (1st - 5th items) and three GRM items (53th to 55th items)
# also, estimate the empirical histogram of latent variable
fix.loc <- c(1:5, 53:55)
(mod.fix1 <- est_irt(
  x = x, data = sim.dat, D = 1, use.gprior = TRUE, gprior = list(dist = "beta", params = c(5, 16)),
  EmpHist = TRUE, Etol = 1e-3, fipc = TRUE, fipc.method = "MEM", fix.loc = fix.loc, verbose = FALSE
))
#> 
#> Call:
#> est_irt(x = x, data = sim.dat, D = 1, use.gprior = TRUE, gprior = list(dist = "beta", 
#>     params = c(5, 16)), EmpHist = TRUE, Etol = 0.001, fipc = TRUE, 
#>     fipc.method = "MEM", fix.loc = fix.loc, verbose = FALSE)
#> 
#> Item parameter estimation using MMLE-EM. 
#> 36 E-step cycles were completed using 49 quadrature points.
#> First-order test: Convergence criteria are satisfied.
#> Second-order test: Solution is a possible local maximum.
#> Computation of variance-covariance matrix: 
#>   Variance-covariance matrix of item parameter estimates is obtainable.
#> 
#> Log-likelihood: -31049.92
summary(mod.fix1)
#> 
#> Call:
#> est_irt(x = x, data = sim.dat, D = 1, use.gprior = TRUE, gprior = list(dist = "beta", 
#>     params = c(5, 16)), EmpHist = TRUE, Etol = 0.001, fipc = TRUE, 
#>     fipc.method = "MEM", fix.loc = fix.loc, verbose = FALSE)
#> 
#> Summary of the Data 
#>  Number of Items: 55
#>  Number of Cases: 1000
#> 
#> Summary of Estimation Process 
#>  Maximum number of EM cycles: 500
#>  Convergence criterion of E-step: 0.001
#>  Number of rectangular quadrature points: 49
#>  Minimum & Maximum quadrature points: -6, 6
#>  Number of free parameters: 147
#>  Number of fixed items: 8
#>  Number of E-step cycles completed: 36
#>  Maximum parameter change: 0.0009203814
#> 
#> Processing time (in seconds) 
#>  EM algorithm: 2.22
#>  Standard error computation: 1.61
#>  Total computation: 4.07
#> 
#> Convergence and Stability of Solution 
#>  First-order test: Convergence criteria are satisfied.
#>  Second-order test: Solution is a possible local maximum.
#>  Computation of variance-covariance matrix: 
#>   Variance-covariance matrix of item parameter estimates is obtainable.
#> 
#> Summary of Estimation Results 
#>  -2loglikelihood: 62099.84
#>  Akaike Information Criterion (AIC): 62393.84
#>  Bayesian Information Criterion (BIC): 63115.28
#>  Item Parameters: 
#>        id  cats  model  par.1  se.1  par.2  se.2  par.3  se.3  par.4  se.4
#> 1    CMC1     2   3PLM   0.76    NA   1.46    NA   0.26    NA     NA    NA
#> 2    CMC2     2   3PLM   1.92    NA  -1.05    NA   0.18    NA     NA    NA
#> 3    CMC3     2   3PLM   0.93    NA   0.39    NA   0.10    NA     NA    NA
#> 4    CMC4     2   3PLM   1.05    NA  -0.41    NA   0.20    NA     NA    NA
#> 5    CMC5     2   3PLM   0.87    NA  -0.12    NA   0.16    NA     NA    NA
#> 6    CMC6     2   3PLM   1.47  0.15   0.61  0.09   0.07  0.03     NA    NA
#> 7    CMC7     2   3PLM   1.45  0.25   1.23  0.14   0.24  0.04     NA    NA
#> 8    CMC8     2   3PLM   0.80  0.11   0.82  0.21   0.12  0.05     NA    NA
#> 9    CMC9     2   3PLM   0.81  0.13   0.63  0.28   0.20  0.07     NA    NA
#> 10  CMC10     2   3PLM   1.55  0.21   0.16  0.14   0.18  0.05     NA    NA
#> 11  CMC11     2   3PLM   0.99  0.17  -0.01  0.33   0.32  0.08     NA    NA
#> 12  CMC12     2   3PLM   0.86  0.13   1.30  0.18   0.11  0.04     NA    NA
#> 13  CMC13     2   3PLM   1.48  0.26   1.61  0.12   0.18  0.03     NA    NA
#> 14  CMC14     2   3PLM   1.53  0.21   0.25  0.16   0.27  0.05     NA    NA
#> 15  CMC15     2   3PLM   1.53  0.18  -0.11  0.13   0.14  0.05     NA    NA
#> 16  CMC16     2   3PLM   2.16  0.22   0.02  0.07   0.08  0.03     NA    NA
#> 17  CMC17     2   3PLM   1.39  0.19   0.03  0.17   0.20  0.06     NA    NA
#> 18  CMC18     2   3PLM   1.36  0.27   1.34  0.16   0.27  0.04     NA    NA
#> 19  CMC19     2   3PLM   2.48  0.37  -0.94  0.12   0.19  0.06     NA    NA
#> 20  CMC20     2   3PLM   1.80  0.37  -1.21  0.26   0.40  0.10     NA    NA
#> 21  CMC21     2   3PLM   1.76  0.22  -0.98  0.17   0.21  0.07     NA    NA
#> 22  CMC22     2   3PLM   0.94  0.13  -0.51  0.27   0.19  0.08     NA    NA
#> 23  CMC23     2   3PLM   0.83  0.10  -0.37  0.23   0.13  0.06     NA    NA
#> 24  CMC24     2   3PLM   0.98  0.21   1.86  0.20   0.22  0.04     NA    NA
#> 25  CMC25     2   3PLM   0.63  0.09  -2.01  0.47   0.21  0.09     NA    NA
#> 26  CMC26     2   3PLM   1.13  0.14  -1.68  0.28   0.22  0.09     NA    NA
#> 27  CMC27     2   3PLM   1.19  0.14   0.01  0.16   0.14  0.05     NA    NA
#> 28  CMC28     2   3PLM   2.23  0.26  -0.13  0.09   0.15  0.04     NA    NA
#> 29  CMC29     2   3PLM   1.31  0.16  -1.32  0.22   0.19  0.08     NA    NA
#> 30  CMC30     2   3PLM   1.63  0.30   1.03  0.15   0.37  0.04     NA    NA
#> 31  CMC31     2   3PLM   1.03  0.15   0.93  0.17   0.15  0.05     NA    NA
#> 32  CMC32     2   3PLM   1.55  0.21  -0.75  0.20   0.26  0.08     NA    NA
#> 33  CMC33     2   3PLM   1.24  0.19  -1.09  0.30   0.31  0.10     NA    NA
#> 34  CMC34     2   3PLM   1.34  0.16   0.31  0.15   0.17  0.05     NA    NA
#> 35  CMC35     2   3PLM   1.24  0.15  -0.36  0.20   0.19  0.07     NA    NA
#> 36  CMC36     2   3PLM   1.06  0.17   1.05  0.17   0.15  0.05     NA    NA
#> 37  CMC37     2   3PLM   2.11  0.26  -0.29  0.11   0.16  0.05     NA    NA
#> 38  CMC38     2   3PLM   0.57  0.11  -0.30  0.55   0.26  0.10     NA    NA
#> 39   CFR1     5    GRM   2.09  0.13  -1.81  0.10  -1.14  0.07  -0.68  0.06
#> 40   CFR2     5    GRM   1.38  0.08  -0.70  0.08  -0.08  0.07   0.48  0.06
#> 41   AMC1     2   3PLM   1.25  0.18   0.62  0.16   0.18  0.05     NA    NA
#> 42   AMC2     2   3PLM   1.79  0.22  -1.61  0.18   0.17  0.07     NA    NA
#> 43   AMC3     2   3PLM   1.37  0.17   0.64  0.12   0.12  0.04     NA    NA
#> 44   AMC4     2   3PLM   0.94  0.11  -0.22  0.23   0.16  0.06     NA    NA
#> 45   AMC5     2   3PLM   1.11  0.33   2.83  0.26   0.21  0.03     NA    NA
#> 46   AMC6     2   3PLM   2.22  0.37   1.70  0.09   0.19  0.02     NA    NA
#> 47   AMC7     2   3PLM   1.16  0.13   0.02  0.14   0.10  0.04     NA    NA
#> 48   AMC8     2   3PLM   1.31  0.16   0.33  0.15   0.18  0.05     NA    NA
#> 49   AMC9     2   3PLM   1.22  0.13   0.30  0.12   0.09  0.04     NA    NA
#> 50  AMC10     2   3PLM   1.83  0.28   1.48  0.09   0.15  0.03     NA    NA
#> 51  AMC11     2   3PLM   1.68  0.22  -1.08  0.17   0.19  0.07     NA    NA
#> 52  AMC12     2   3PLM   0.91  0.13  -0.82  0.35   0.26  0.09     NA    NA
#> 53   AFR1     5    GRM   1.14    NA  -0.37    NA   0.22    NA   0.85    NA
#> 54   AFR2     5    GRM   1.23    NA  -2.08    NA  -1.35    NA  -0.71    NA
#> 55   AFR3     5    GRM   0.88    NA  -0.76    NA  -0.01    NA   0.67    NA
#>     par.5  se.5
#> 1      NA    NA
#> 2      NA    NA
#> 3      NA    NA
#> 4      NA    NA
#> 5      NA    NA
#> 6      NA    NA
#> 7      NA    NA
#> 8      NA    NA
#> 9      NA    NA
#> 10     NA    NA
#> 11     NA    NA
#> 12     NA    NA
#> 13     NA    NA
#> 14     NA    NA
#> 15     NA    NA
#> 16     NA    NA
#> 17     NA    NA
#> 18     NA    NA
#> 19     NA    NA
#> 20     NA    NA
#> 21     NA    NA
#> 22     NA    NA
#> 23     NA    NA
#> 24     NA    NA
#> 25     NA    NA
#> 26     NA    NA
#> 27     NA    NA
#> 28     NA    NA
#> 29     NA    NA
#> 30     NA    NA
#> 31     NA    NA
#> 32     NA    NA
#> 33     NA    NA
#> 34     NA    NA
#> 35     NA    NA
#> 36     NA    NA
#> 37     NA    NA
#> 38     NA    NA
#> 39  -0.24  0.05
#> 40   1.05  0.07
#> 41     NA    NA
#> 42     NA    NA
#> 43     NA    NA
#> 44     NA    NA
#> 45     NA    NA
#> 46     NA    NA
#> 47     NA    NA
#> 48     NA    NA
#> 49     NA    NA
#> 50     NA    NA
#> 51     NA    NA
#> 52     NA    NA
#> 53   1.38    NA
#> 54  -0.12    NA
#> 55   1.25    NA
#>  Group Parameters: 
#>              mu  sigma2  sigma
#> estimates  0.40    1.88   1.37
#> se         0.04    0.08   0.03

# plot the estimated empirical histogram of latent variable prior distribution
(emphist <- getirt(mod.fix1, what = "weights"))
#>    theta       weight
#> 1  -6.00 2.301252e-10
#> 2  -5.75 1.434595e-09
#> 3  -5.50 8.649282e-09
#> 4  -5.25 5.019868e-08
#> 5  -5.00 2.782912e-07
#> 6  -4.75 1.456751e-06
#> 7  -4.50 7.085630e-06
#> 8  -4.25 3.134808e-05
#> 9  -4.00 1.227012e-04
#> 10 -3.75 4.100603e-04
#> 11 -3.50 1.119742e-03
#> 12 -3.25 2.386354e-03
#> 13 -3.00 3.889322e-03
#> 14 -2.75 5.167720e-03
#> 15 -2.50 6.767224e-03
#> 16 -2.25 1.053445e-02
#> 17 -2.00 1.742567e-02
#> 18 -1.75 2.236173e-02
#> 19 -1.50 2.498735e-02
#> 20 -1.25 3.374293e-02
#> 21 -1.00 4.224442e-02
#> 22 -0.75 4.948939e-02
#> 23 -0.50 7.710828e-02
#> 24 -0.25 8.024288e-02
#> 25  0.00 4.752956e-02
#> 26  0.25 5.636581e-02
#> 27  0.50 8.674316e-02
#> 28  0.75 6.936382e-02
#> 29  1.00 6.035964e-02
#> 30  1.25 6.234864e-02
#> 31  1.50 5.768393e-02
#> 32  1.75 4.254007e-02
#> 33  2.00 3.148380e-02
#> 34  2.25 3.111071e-02
#> 35  2.50 2.935626e-02
#> 36  2.75 1.950494e-02
#> 37  3.00 1.019680e-02
#> 38  3.25 5.154557e-03
#> 39  3.50 2.816466e-03
#> 40  3.75 1.753617e-03
#> 41  4.00 1.282170e-03
#> 42  4.25 1.097172e-03
#> 43  4.50 1.050444e-03
#> 44  4.75 1.046478e-03
#> 45  5.00 1.004637e-03
#> 46  5.25 8.721994e-04
#> 47  5.50 6.557355e-04
#> 48  5.75 4.168380e-04
#> 49  6.00 2.220842e-04
plot(emphist$weight ~ emphist$theta,
  xlab = "Theta",
  ylab = "Density", type = "h"
)



## ----------------------------------------------------------------------------
# 2. The example code below shows how to prepare the data sets and how to estimate
#    the item parameters using the FAPC:
## ----------------------------------------------------------------------------

## Step 1: prepare a data set
## In this example, we generated examinees' true proficiency parameters and simulated
## the item response data using the function "simdat". Because the true
## proficiency parameters are not known in reality, the true proficiencies
## would be replaced with the proficiency estimates for the calibration.

# import the "-prm.txt" output file from flexMIRT
flex_sam <- system.file("extdata", "flexmirt_sample-prm.txt", package = "irtQ")

# select the item metadata
x <- bring.flexmirt(file = flex_sam, "par")$Group1$full_df

# modify the item metadata so that some items follow 1PLM, 2PLM and GPCM
x[c(1:3, 5), 3] <- "1PLM"
x[c(1:3, 5), 4] <- 1
x[c(1:3, 5), 6] <- 0
x[c(4, 8:12), 3] <- "2PLM"
x[c(4, 8:12), 6] <- 0
x[54:55, 3] <- "GPCM"

# generate examinees' abilities from N(0, 1)
set.seed(23)
score <- rnorm(500, mean = 0, sd = 1)

# simulate the response data
data <- simdat(x = x, theta = score, D = 1)

## Step 2: Estimate the item parameters
# 1) item parameter estimation: constrain the slope parameters of the 1PLM to be equal
(mod1 <- est_item(x, data, score,
  D = 1, fix.a.1pl = FALSE, use.gprior = TRUE,
  gprior = list(dist = "beta", params = c(5, 17)), use.startval = FALSE
))
#> Starting... 
#> Parsing input... 
#> Estimating item parameters... 
#> Estimation is finished.
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = FALSE, 
#>     use.gprior = TRUE, gprior = list(dist = "beta", params = c(5, 
#>         17)), use.startval = FALSE)
#> 
#> Fixed ability parameter calibration (Stocking's Method A). 
#> All item parameters were successfully converged. 
#> 
#> Log-likelihood: -15830.66
summary(mod1)
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = FALSE, 
#>     use.gprior = TRUE, gprior = list(dist = "beta", params = c(5, 
#>         17)), use.startval = FALSE)
#> 
#> Summary of the Data 
#>  Number of Items in Response Data: 55
#>  Number of Excluded Items: 0
#>  Number of free parameters: 162
#>  Number of Responses for Each Item: 
#>        id    n
#> 1    CMC1  500
#> 2    CMC2  500
#> 3    CMC3  500
#> 4    CMC4  500
#> 5    CMC5  500
#> 6    CMC6  500
#> 7    CMC7  500
#> 8    CMC8  500
#> 9    CMC9  500
#> 10  CMC10  500
#> 11  CMC11  500
#> 12  CMC12  500
#> 13  CMC13  500
#> 14  CMC14  500
#> 15  CMC15  500
#> 16  CMC16  500
#> 17  CMC17  500
#> 18  CMC18  500
#> 19  CMC19  500
#> 20  CMC20  500
#> 21  CMC21  500
#> 22  CMC22  500
#> 23  CMC23  500
#> 24  CMC24  500
#> 25  CMC25  500
#> 26  CMC26  500
#> 27  CMC27  500
#> 28  CMC28  500
#> 29  CMC29  500
#> 30  CMC30  500
#> 31  CMC31  500
#> 32  CMC32  500
#> 33  CMC33  500
#> 34  CMC34  500
#> 35  CMC35  500
#> 36  CMC36  500
#> 37  CMC37  500
#> 38  CMC38  500
#> 39   CFR1  500
#> 40   CFR2  500
#> 41   AMC1  500
#> 42   AMC2  500
#> 43   AMC3  500
#> 44   AMC4  500
#> 45   AMC5  500
#> 46   AMC6  500
#> 47   AMC7  500
#> 48   AMC8  500
#> 49   AMC9  500
#> 50  AMC10  500
#> 51  AMC11  500
#> 52  AMC12  500
#> 53   AFR1  500
#> 54   AFR2  500
#> 55   AFR3  500
#> 
#> Processing time (in seconds) 
#>  Total computation: 0.82
#> 
#> Convergence of Solution 
#>  All item parameters were successfully converged.
#> 
#> Summary of Estimation Results 
#>  -2loglikelihood: 31661.31
#>  Item Parameters: 
#>        id  cats  model  par.1  se.1  par.2  se.2  par.3  se.3  par.4  se.4
#> 1    CMC1     2   1PLM   1.02  0.06   1.60  0.13     NA    NA     NA    NA
#> 2    CMC2     2   1PLM   1.02    NA  -1.06  0.12     NA    NA     NA    NA
#> 3    CMC3     2   1PLM   1.02    NA   0.40  0.10     NA    NA     NA    NA
#> 4    CMC4     2   2PLM   1.02    NA  -0.25  0.10     NA    NA     NA    NA
#> 5    CMC5     2   1PLM   0.96  0.12  -0.43  0.11     NA    NA     NA    NA
#> 6    CMC6     2   3PLM   1.88  0.27   0.67  0.09   0.10  0.03     NA    NA
#> 7    CMC7     2   3PLM   0.88  0.17   1.03  0.23   0.13  0.05     NA    NA
#> 8    CMC8     2   2PLM   0.92  0.12   0.87  0.13     NA    NA     NA    NA
#> 9    CMC9     2   2PLM   1.00  0.12   0.89  0.13     NA    NA     NA    NA
#> 10  CMC10     2   2PLM   1.61  0.15   0.09  0.07     NA    NA     NA    NA
#> 11  CMC11     2   2PLM   1.07  0.12  -0.37  0.10     NA    NA     NA    NA
#> 12  CMC12     2   2PLM   0.94  0.12   1.10  0.15     NA    NA     NA    NA
#> 13  CMC13     2   3PLM   1.35  0.34   1.31  0.17   0.17  0.04     NA    NA
#> 14  CMC14     2   3PLM   1.36  0.31   0.15  0.24   0.24  0.08     NA    NA
#> 15  CMC15     2   3PLM   1.53  0.27   0.01  0.17   0.20  0.07     NA    NA
#> 16  CMC16     2   3PLM   2.10  0.25   0.04  0.08   0.10  0.04     NA    NA
#> 17  CMC17     2   3PLM   1.02  0.15  -0.41  0.22   0.16  0.07     NA    NA
#> 18  CMC18     2   3PLM   1.27  0.38   1.42  0.20   0.22  0.05     NA    NA
#> 19  CMC19     2   3PLM   2.25  0.32  -1.11  0.14   0.17  0.07     NA    NA
#> 20  CMC20     2   3PLM   1.47  0.22  -1.74  0.22   0.18  0.08     NA    NA
#> 21  CMC21     2   3PLM   1.38  0.21  -1.25  0.23   0.20  0.08     NA    NA
#> 22  CMC22     2   3PLM   0.92  0.16  -0.55  0.28   0.19  0.08     NA    NA
#> 23  CMC23     2   3PLM   1.10  0.22  -0.12  0.27   0.22  0.09     NA    NA
#> 24  CMC24     2   3PLM   1.21  0.34   1.43  0.21   0.22  0.05     NA    NA
#> 25  CMC25     2   3PLM   0.83  0.16  -1.51  0.40   0.21  0.09     NA    NA
#> 26  CMC26     2   3PLM   1.07  0.18  -2.16  0.35   0.19  0.08     NA    NA
#> 27  CMC27     2   3PLM   1.18  0.18   0.09  0.17   0.14  0.06     NA    NA
#> 28  CMC28     2   3PLM   2.19  0.31  -0.17  0.11   0.19  0.05     NA    NA
#> 29  CMC29     2   3PLM   2.48  0.54  -0.81  0.20   0.38  0.09     NA    NA
#> 30  CMC30     2   3PLM   1.88  0.45   0.69  0.15   0.34  0.05     NA    NA
#> 31  CMC31     2   3PLM   0.70  0.16   1.00  0.32   0.16  0.07     NA    NA
#> 32  CMC32     2   3PLM   1.73  0.30  -0.78  0.21   0.26  0.09     NA    NA
#> 33  CMC33     2   3PLM   1.07  0.17  -1.45  0.28   0.19  0.08     NA    NA
#> 34  CMC34     2   3PLM   1.04  0.17   0.21  0.20   0.16  0.06     NA    NA
#> 35  CMC35     2   3PLM   1.36  0.19  -0.45  0.17   0.16  0.06     NA    NA
#> 36  CMC36     2   3PLM   0.88  0.17   0.97  0.23   0.14  0.05     NA    NA
#> 37  CMC37     2   3PLM   2.13  0.26  -0.25  0.09   0.13  0.05     NA    NA
#> 38  CMC38     2   3PLM   0.87  0.17  -0.31  0.32   0.20  0.09     NA    NA
#> 39   CFR1     5    GRM   2.00  0.14  -1.88  0.12  -1.25  0.08  -0.70  0.06
#> 40   CFR2     5    GRM   1.39  0.11  -0.80  0.09  -0.13  0.07   0.60  0.08
#> 41   AMC1     2   3PLM   1.81  0.39   0.74  0.14   0.28  0.05     NA    NA
#> 42   AMC2     2   3PLM   1.70  0.25  -1.59  0.20   0.19  0.08     NA    NA
#> 43   AMC3     2   3PLM   1.30  0.25   0.68  0.16   0.16  0.05     NA    NA
#> 44   AMC4     2   3PLM   0.94  0.17  -0.18  0.26   0.18  0.07     NA    NA
#> 45   AMC5     2   3PLM   1.69  0.65   2.11  0.26   0.19  0.03     NA    NA
#> 46   AMC6     2   3PLM   2.83  0.64   1.44  0.10   0.15  0.02     NA    NA
#> 47   AMC7     2   3PLM   1.69  0.41   0.37  0.18   0.25  0.07     NA    NA
#> 48   AMC8     2   3PLM   1.65  0.29   0.39  0.14   0.20  0.05     NA    NA
#> 49   AMC9     2   3PLM   1.55  0.26   0.49  0.13   0.15  0.05     NA    NA
#> 50  AMC10     2   3PLM   2.48  0.51   1.31  0.10   0.13  0.02     NA    NA
#> 51  AMC11     2   3PLM   1.73  0.23  -1.02  0.15   0.16  0.07     NA    NA
#> 52  AMC12     2   3PLM   0.95  0.20  -0.83  0.38   0.24  0.10     NA    NA
#> 53   AFR1     5    GRM   1.14  0.10  -0.30  0.09   0.30  0.09   0.92  0.11
#> 54   AFR2     5   GPCM   1.33  0.11  -1.99  0.21  -1.31  0.15  -0.72  0.12
#> 55   AFR3     5   GPCM   0.89  0.07  -0.80  0.15   0.15  0.15   0.46  0.16
#>     par.5  se.5
#> 1      NA    NA
#> 2      NA    NA
#> 3      NA    NA
#> 4      NA    NA
#> 5      NA    NA
#> 6      NA    NA
#> 7      NA    NA
#> 8      NA    NA
#> 9      NA    NA
#> 10     NA    NA
#> 11     NA    NA
#> 12     NA    NA
#> 13     NA    NA
#> 14     NA    NA
#> 15     NA    NA
#> 16     NA    NA
#> 17     NA    NA
#> 18     NA    NA
#> 19     NA    NA
#> 20     NA    NA
#> 21     NA    NA
#> 22     NA    NA
#> 23     NA    NA
#> 24     NA    NA
#> 25     NA    NA
#> 26     NA    NA
#> 27     NA    NA
#> 28     NA    NA
#> 29     NA    NA
#> 30     NA    NA
#> 31     NA    NA
#> 32     NA    NA
#> 33     NA    NA
#> 34     NA    NA
#> 35     NA    NA
#> 36     NA    NA
#> 37     NA    NA
#> 38     NA    NA
#> 39  -0.23  0.06
#> 40   1.09  0.10
#> 41     NA    NA
#> 42     NA    NA
#> 43     NA    NA
#> 44     NA    NA
#> 45     NA    NA
#> 46     NA    NA
#> 47     NA    NA
#> 48     NA    NA
#> 49     NA    NA
#> 50     NA    NA
#> 51     NA    NA
#> 52     NA    NA
#> 53   1.35  0.13
#> 54  -0.21  0.10
#> 55   1.35  0.19
#> 
#>  Group Parameters: 
#>    mu  sigma  
#>  0.03   1.02

# 2) item parameter estimation: fix the slope parameters of the 1PLM to 1
(mod2 <- est_item(x, data, score,
  D = 1, fix.a.1pl = TRUE, a.val.1pl = 1, use.gprior = TRUE,
  gprior = list(dist = "beta", params = c(5, 17)), use.startval = FALSE
))
#> Starting... 
#> Parsing input... 
#> Estimating item parameters... 
#> Estimation is finished.
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = TRUE, 
#>     a.val.1pl = 1, use.gprior = TRUE, gprior = list(dist = "beta", 
#>         params = c(5, 17)), use.startval = FALSE)
#> 
#> Fixed ability parameter calibration (Stocking's Method A). 
#> All item parameters were successfully converged. 
#> 
#> Log-likelihood: -15830.7
summary(mod2)
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = TRUE, 
#>     a.val.1pl = 1, use.gprior = TRUE, gprior = list(dist = "beta", 
#>         params = c(5, 17)), use.startval = FALSE)
#> 
#> Summary of the Data 
#>  Number of Items in Response Data: 55
#>  Number of Excluded Items: 0
#>  Number of free parameters: 161
#>  Number of Responses for Each Item: 
#>        id    n
#> 1    CMC1  500
#> 2    CMC2  500
#> 3    CMC3  500
#> 4    CMC4  500
#> 5    CMC5  500
#> 6    CMC6  500
#> 7    CMC7  500
#> 8    CMC8  500
#> 9    CMC9  500
#> 10  CMC10  500
#> 11  CMC11  500
#> 12  CMC12  500
#> 13  CMC13  500
#> 14  CMC14  500
#> 15  CMC15  500
#> 16  CMC16  500
#> 17  CMC17  500
#> 18  CMC18  500
#> 19  CMC19  500
#> 20  CMC20  500
#> 21  CMC21  500
#> 22  CMC22  500
#> 23  CMC23  500
#> 24  CMC24  500
#> 25  CMC25  500
#> 26  CMC26  500
#> 27  CMC27  500
#> 28  CMC28  500
#> 29  CMC29  500
#> 30  CMC30  500
#> 31  CMC31  500
#> 32  CMC32  500
#> 33  CMC33  500
#> 34  CMC34  500
#> 35  CMC35  500
#> 36  CMC36  500
#> 37  CMC37  500
#> 38  CMC38  500
#> 39   CFR1  500
#> 40   CFR2  500
#> 41   AMC1  500
#> 42   AMC2  500
#> 43   AMC3  500
#> 44   AMC4  500
#> 45   AMC5  500
#> 46   AMC6  500
#> 47   AMC7  500
#> 48   AMC8  500
#> 49   AMC9  500
#> 50  AMC10  500
#> 51  AMC11  500
#> 52  AMC12  500
#> 53   AFR1  500
#> 54   AFR2  500
#> 55   AFR3  500
#> 
#> Processing time (in seconds) 
#>  Total computation: 0.68
#> 
#> Convergence of Solution 
#>  All item parameters were successfully converged.
#> 
#> Summary of Estimation Results 
#>  -2loglikelihood: 31661.4
#>  Item Parameters: 
#>        id  cats  model  par.1  se.1  par.2  se.2  par.3  se.3  par.4  se.4
#> 1    CMC1     2   1PLM   1.00    NA   1.62  0.12     NA    NA     NA    NA
#> 2    CMC2     2   1PLM   1.00    NA  -1.08  0.11     NA    NA     NA    NA
#> 3    CMC3     2   1PLM   1.00    NA   0.40  0.10     NA    NA     NA    NA
#> 4    CMC4     2   2PLM   0.96  0.12  -0.43  0.11     NA    NA     NA    NA
#> 5    CMC5     2   1PLM   1.00    NA  -0.25  0.10     NA    NA     NA    NA
#> 6    CMC6     2   3PLM   1.88  0.27   0.67  0.09   0.10  0.03     NA    NA
#> 7    CMC7     2   3PLM   0.88  0.17   1.03  0.23   0.13  0.05     NA    NA
#> 8    CMC8     2   2PLM   0.92  0.12   0.87  0.13     NA    NA     NA    NA
#> 9    CMC9     2   2PLM   1.00  0.12   0.89  0.13     NA    NA     NA    NA
#> 10  CMC10     2   2PLM   1.61  0.15   0.09  0.07     NA    NA     NA    NA
#> 11  CMC11     2   2PLM   1.07  0.12  -0.37  0.10     NA    NA     NA    NA
#> 12  CMC12     2   2PLM   0.94  0.12   1.10  0.15     NA    NA     NA    NA
#> 13  CMC13     2   3PLM   1.35  0.34   1.31  0.17   0.17  0.04     NA    NA
#> 14  CMC14     2   3PLM   1.36  0.31   0.15  0.24   0.24  0.08     NA    NA
#> 15  CMC15     2   3PLM   1.53  0.27   0.01  0.17   0.20  0.07     NA    NA
#> 16  CMC16     2   3PLM   2.10  0.25   0.04  0.08   0.10  0.04     NA    NA
#> 17  CMC17     2   3PLM   1.02  0.15  -0.41  0.22   0.16  0.07     NA    NA
#> 18  CMC18     2   3PLM   1.27  0.38   1.42  0.20   0.22  0.05     NA    NA
#> 19  CMC19     2   3PLM   2.25  0.32  -1.11  0.14   0.17  0.07     NA    NA
#> 20  CMC20     2   3PLM   1.47  0.22  -1.74  0.22   0.18  0.08     NA    NA
#> 21  CMC21     2   3PLM   1.38  0.21  -1.25  0.23   0.20  0.08     NA    NA
#> 22  CMC22     2   3PLM   0.92  0.16  -0.55  0.28   0.19  0.08     NA    NA
#> 23  CMC23     2   3PLM   1.10  0.22  -0.12  0.27   0.22  0.09     NA    NA
#> 24  CMC24     2   3PLM   1.21  0.34   1.43  0.21   0.22  0.05     NA    NA
#> 25  CMC25     2   3PLM   0.83  0.16  -1.51  0.40   0.21  0.09     NA    NA
#> 26  CMC26     2   3PLM   1.07  0.18  -2.16  0.35   0.19  0.08     NA    NA
#> 27  CMC27     2   3PLM   1.18  0.18   0.09  0.17   0.14  0.06     NA    NA
#> 28  CMC28     2   3PLM   2.19  0.31  -0.17  0.11   0.19  0.05     NA    NA
#> 29  CMC29     2   3PLM   2.48  0.54  -0.81  0.20   0.38  0.09     NA    NA
#> 30  CMC30     2   3PLM   1.88  0.45   0.69  0.15   0.34  0.05     NA    NA
#> 31  CMC31     2   3PLM   0.70  0.16   1.00  0.32   0.16  0.07     NA    NA
#> 32  CMC32     2   3PLM   1.73  0.30  -0.78  0.21   0.26  0.09     NA    NA
#> 33  CMC33     2   3PLM   1.07  0.17  -1.45  0.28   0.19  0.08     NA    NA
#> 34  CMC34     2   3PLM   1.04  0.17   0.21  0.20   0.16  0.06     NA    NA
#> 35  CMC35     2   3PLM   1.36  0.19  -0.45  0.17   0.16  0.06     NA    NA
#> 36  CMC36     2   3PLM   0.88  0.17   0.97  0.23   0.14  0.05     NA    NA
#> 37  CMC37     2   3PLM   2.13  0.26  -0.25  0.09   0.13  0.05     NA    NA
#> 38  CMC38     2   3PLM   0.87  0.17  -0.31  0.32   0.20  0.09     NA    NA
#> 39   CFR1     5    GRM   2.00  0.14  -1.88  0.12  -1.25  0.08  -0.70  0.06
#> 40   CFR2     5    GRM   1.39  0.11  -0.80  0.09  -0.13  0.07   0.60  0.08
#> 41   AMC1     2   3PLM   1.81  0.39   0.74  0.14   0.28  0.05     NA    NA
#> 42   AMC2     2   3PLM   1.70  0.25  -1.59  0.20   0.19  0.08     NA    NA
#> 43   AMC3     2   3PLM   1.30  0.25   0.68  0.16   0.16  0.05     NA    NA
#> 44   AMC4     2   3PLM   0.94  0.17  -0.18  0.26   0.18  0.07     NA    NA
#> 45   AMC5     2   3PLM   1.69  0.65   2.11  0.26   0.19  0.03     NA    NA
#> 46   AMC6     2   3PLM   2.83  0.64   1.44  0.10   0.15  0.02     NA    NA
#> 47   AMC7     2   3PLM   1.69  0.41   0.37  0.18   0.25  0.07     NA    NA
#> 48   AMC8     2   3PLM   1.65  0.29   0.39  0.14   0.20  0.05     NA    NA
#> 49   AMC9     2   3PLM   1.55  0.26   0.49  0.13   0.15  0.05     NA    NA
#> 50  AMC10     2   3PLM   2.48  0.51   1.31  0.10   0.13  0.02     NA    NA
#> 51  AMC11     2   3PLM   1.73  0.23  -1.02  0.15   0.16  0.07     NA    NA
#> 52  AMC12     2   3PLM   0.95  0.20  -0.83  0.38   0.24  0.10     NA    NA
#> 53   AFR1     5    GRM   1.14  0.10  -0.30  0.09   0.30  0.09   0.92  0.11
#> 54   AFR2     5   GPCM   1.33  0.11  -1.99  0.21  -1.31  0.15  -0.72  0.12
#> 55   AFR3     5   GPCM   0.89  0.07  -0.80  0.15   0.15  0.15   0.46  0.16
#>     par.5  se.5
#> 1      NA    NA
#> 2      NA    NA
#> 3      NA    NA
#> 4      NA    NA
#> 5      NA    NA
#> 6      NA    NA
#> 7      NA    NA
#> 8      NA    NA
#> 9      NA    NA
#> 10     NA    NA
#> 11     NA    NA
#> 12     NA    NA
#> 13     NA    NA
#> 14     NA    NA
#> 15     NA    NA
#> 16     NA    NA
#> 17     NA    NA
#> 18     NA    NA
#> 19     NA    NA
#> 20     NA    NA
#> 21     NA    NA
#> 22     NA    NA
#> 23     NA    NA
#> 24     NA    NA
#> 25     NA    NA
#> 26     NA    NA
#> 27     NA    NA
#> 28     NA    NA
#> 29     NA    NA
#> 30     NA    NA
#> 31     NA    NA
#> 32     NA    NA
#> 33     NA    NA
#> 34     NA    NA
#> 35     NA    NA
#> 36     NA    NA
#> 37     NA    NA
#> 38     NA    NA
#> 39  -0.23  0.06
#> 40   1.09  0.10
#> 41     NA    NA
#> 42     NA    NA
#> 43     NA    NA
#> 44     NA    NA
#> 45     NA    NA
#> 46     NA    NA
#> 47     NA    NA
#> 48     NA    NA
#> 49     NA    NA
#> 50     NA    NA
#> 51     NA    NA
#> 52     NA    NA
#> 53   1.35  0.13
#> 54  -0.21  0.10
#> 55   1.35  0.19
#> 
#>  Group Parameters: 
#>    mu  sigma  
#>  0.03   1.02

# 3) item parameter estimation: fix the guessing parameters of the 3PLM to 0.2
(mod3 <- est_item(x, data, score,
  D = 1, fix.a.1pl = TRUE, fix.g = TRUE, a.val.1pl = 1, g.val = .2,
  use.startval = FALSE
))
#> Starting... 
#> Parsing input... 
#> Estimating item parameters... 
#> Estimation is finished.
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = TRUE, 
#>     fix.g = TRUE, a.val.1pl = 1, g.val = 0.2, use.startval = FALSE)
#> 
#> Fixed ability parameter calibration (Stocking's Method A). 
#> All item parameters were successfully converged. 
#> 
#> Log-likelihood: -15916.26
summary(mod3)
#> 
#> Call:
#> est_item(x = x, data = data, score = score, D = 1, fix.a.1pl = TRUE, 
#>     fix.g = TRUE, a.val.1pl = 1, g.val = 0.2, use.startval = FALSE)
#> 
#> Summary of the Data 
#>  Number of Items in Response Data: 55
#>  Number of Excluded Items: 0
#>  Number of free parameters: 121
#>  Number of Responses for Each Item: 
#>        id    n
#> 1    CMC1  500
#> 2    CMC2  500
#> 3    CMC3  500
#> 4    CMC4  500
#> 5    CMC5  500
#> 6    CMC6  500
#> 7    CMC7  500
#> 8    CMC8  500
#> 9    CMC9  500
#> 10  CMC10  500
#> 11  CMC11  500
#> 12  CMC12  500
#> 13  CMC13  500
#> 14  CMC14  500
#> 15  CMC15  500
#> 16  CMC16  500
#> 17  CMC17  500
#> 18  CMC18  500
#> 19  CMC19  500
#> 20  CMC20  500
#> 21  CMC21  500
#> 22  CMC22  500
#> 23  CMC23  500
#> 24  CMC24  500
#> 25  CMC25  500
#> 26  CMC26  500
#> 27  CMC27  500
#> 28  CMC28  500
#> 29  CMC29  500
#> 30  CMC30  500
#> 31  CMC31  500
#> 32  CMC32  500
#> 33  CMC33  500
#> 34  CMC34  500
#> 35  CMC35  500
#> 36  CMC36  500
#> 37  CMC37  500
#> 38  CMC38  500
#> 39   CFR1  500
#> 40   CFR2  500
#> 41   AMC1  500
#> 42   AMC2  500
#> 43   AMC3  500
#> 44   AMC4  500
#> 45   AMC5  500
#> 46   AMC6  500
#> 47   AMC7  500
#> 48   AMC8  500
#> 49   AMC9  500
#> 50  AMC10  500
#> 51  AMC11  500
#> 52  AMC12  500
#> 53   AFR1  500
#> 54   AFR2  500
#> 55   AFR3  500
#> 
#> Processing time (in seconds) 
#>  Total computation: 0.43
#> 
#> Convergence of Solution 
#>  All item parameters were successfully converged.
#> 
#> Summary of Estimation Results 
#>  -2loglikelihood: 31832.52
#>  Item Parameters: 
#>        id  cats  model  par.1  se.1  par.2  se.2  par.3  se.3  par.4  se.4
#> 1    CMC1     2   1PLM   1.00    NA   1.62  0.12     NA    NA     NA    NA
#> 2    CMC2     2   1PLM   1.00    NA  -1.08  0.11     NA    NA     NA    NA
#> 3    CMC3     2   1PLM   1.00    NA   0.40  0.10     NA    NA     NA    NA
#> 4    CMC4     2   2PLM   0.96  0.12  -0.43  0.11     NA    NA     NA    NA
#> 5    CMC5     2   1PLM   1.00    NA  -0.25  0.10     NA    NA     NA    NA
#> 6    CMC6     2   3PLM   2.25  0.29   0.83  0.08   0.20    NA     NA    NA
#> 7    CMC7     2   3PLM   1.00  0.17   1.22  0.19   0.20    NA     NA    NA
#> 8    CMC8     2   2PLM   0.92  0.12   0.87  0.13     NA    NA     NA    NA
#> 9    CMC9     2   2PLM   1.00  0.12   0.89  0.13     NA    NA     NA    NA
#> 10  CMC10     2   2PLM   1.61  0.15   0.09  0.07     NA    NA     NA    NA
#> 11  CMC11     2   2PLM   1.07  0.12  -0.37  0.10     NA    NA     NA    NA
#> 12  CMC12     2   2PLM   0.94  0.12   1.10  0.15     NA    NA     NA    NA
#> 13  CMC13     2   3PLM   1.53  0.28   1.37  0.15   0.20    NA     NA    NA
#> 14  CMC14     2   3PLM   1.26  0.18   0.05  0.10   0.20    NA     NA    NA
#> 15  CMC15     2   3PLM   1.52  0.20   0.00  0.09   0.20    NA     NA    NA
#> 16  CMC16     2   3PLM   2.36  0.27   0.18  0.07   0.20    NA     NA    NA
#> 17  CMC17     2   3PLM   1.06  0.15  -0.30  0.12   0.20    NA     NA    NA
#> 18  CMC18     2   3PLM   1.16  0.23   1.38  0.19   0.20    NA     NA    NA
#> 19  CMC19     2   3PLM   2.30  0.30  -1.07  0.10   0.20    NA     NA    NA
#> 20  CMC20     2   3PLM   1.48  0.22  -1.71  0.19   0.20    NA     NA    NA
#> 21  CMC21     2   3PLM   1.38  0.19  -1.25  0.16   0.20    NA     NA    NA
#> 22  CMC22     2   3PLM   0.93  0.14  -0.52  0.15   0.20    NA     NA    NA
#> 23  CMC23     2   3PLM   1.08  0.16  -0.17  0.12   0.20    NA     NA    NA
#> 24  CMC24     2   3PLM   1.13  0.23   1.40  0.19   0.20    NA     NA    NA
#> 25  CMC25     2   3PLM   0.82  0.15  -1.55  0.28   0.20    NA     NA    NA
#> 26  CMC26     2   3PLM   1.07  0.18  -2.14  0.31   0.20    NA     NA    NA
#> 27  CMC27     2   3PLM   1.27  0.17   0.22  0.10   0.20    NA     NA    NA
#> 28  CMC28     2   3PLM   2.22  0.27  -0.15  0.07   0.20    NA     NA    NA
#> 29  CMC29     2   3PLM   1.84  0.28  -1.19  0.14   0.20    NA     NA    NA
#> 30  CMC30     2   3PLM   1.19  0.20   0.35  0.11   0.20    NA     NA    NA
#> 31  CMC31     2   3PLM   0.76  0.15   1.15  0.23   0.20    NA     NA    NA
#> 32  CMC32     2   3PLM   1.62  0.22  -0.90  0.12   0.20    NA     NA    NA
#> 33  CMC33     2   3PLM   1.07  0.16  -1.43  0.21   0.20    NA     NA    NA
#> 34  CMC34     2   3PLM   1.11  0.16   0.33  0.12   0.20    NA     NA    NA
#> 35  CMC35     2   3PLM   1.42  0.18  -0.36  0.10   0.20    NA     NA    NA
#> 36  CMC36     2   3PLM   1.00  0.17   1.15  0.18   0.20    NA     NA    NA
#> 37  CMC37     2   3PLM   2.30  0.27  -0.15  0.07   0.20    NA     NA    NA
#> 38  CMC38     2   3PLM   0.87  0.14  -0.33  0.15   0.20    NA     NA    NA
#> 39   CFR1     5    GRM   2.00  0.14  -1.88  0.12  -1.25  0.08  -0.70  0.06
#> 40   CFR2     5    GRM   1.39  0.11  -0.80  0.09  -0.13  0.07   0.60  0.08
#> 41   AMC1     2   3PLM   1.45  0.22   0.57  0.10   0.20    NA     NA    NA
#> 42   AMC2     2   3PLM   1.72  0.25  -1.57  0.16   0.20    NA     NA    NA
#> 43   AMC3     2   3PLM   1.44  0.21   0.77  0.11   0.20    NA     NA    NA
#> 44   AMC4     2   3PLM   0.96  0.15  -0.13  0.13   0.20    NA     NA    NA
#> 45   AMC5     2   3PLM   1.83  0.53   2.10  0.25   0.20    NA     NA    NA
#> 46   AMC6     2   3PLM   3.32  0.68   1.50  0.09   0.20    NA     NA    NA
#> 47   AMC7     2   3PLM   1.48  0.21   0.25  0.09   0.20    NA     NA    NA
#> 48   AMC8     2   3PLM   1.65  0.23   0.39  0.09   0.20    NA     NA    NA
#> 49   AMC9     2   3PLM   1.72  0.23   0.59  0.09   0.20    NA     NA    NA
#> 50  AMC10     2   3PLM   3.21  0.62   1.40  0.09   0.20    NA     NA    NA
#> 51  AMC11     2   3PLM   1.78  0.22  -0.96  0.11   0.20    NA     NA    NA
#> 52  AMC12     2   3PLM   0.91  0.15  -0.96  0.19   0.20    NA     NA    NA
#> 53   AFR1     5    GRM   1.14  0.10  -0.30  0.09   0.30  0.09   0.92  0.11
#> 54   AFR2     5   GPCM   1.33  0.11  -1.99  0.21  -1.31  0.15  -0.72  0.12
#> 55   AFR3     5   GPCM   0.89  0.07  -0.80  0.15   0.15  0.15   0.46  0.16
#>     par.5  se.5
#> 1      NA    NA
#> 2      NA    NA
#> 3      NA    NA
#> 4      NA    NA
#> 5      NA    NA
#> 6      NA    NA
#> 7      NA    NA
#> 8      NA    NA
#> 9      NA    NA
#> 10     NA    NA
#> 11     NA    NA
#> 12     NA    NA
#> 13     NA    NA
#> 14     NA    NA
#> 15     NA    NA
#> 16     NA    NA
#> 17     NA    NA
#> 18     NA    NA
#> 19     NA    NA
#> 20     NA    NA
#> 21     NA    NA
#> 22     NA    NA
#> 23     NA    NA
#> 24     NA    NA
#> 25     NA    NA
#> 26     NA    NA
#> 27     NA    NA
#> 28     NA    NA
#> 29     NA    NA
#> 30     NA    NA
#> 31     NA    NA
#> 32     NA    NA
#> 33     NA    NA
#> 34     NA    NA
#> 35     NA    NA
#> 36     NA    NA
#> 37     NA    NA
#> 38     NA    NA
#> 39  -0.23  0.06
#> 40   1.09  0.10
#> 41     NA    NA
#> 42     NA    NA
#> 43     NA    NA
#> 44     NA    NA
#> 45     NA    NA
#> 46     NA    NA
#> 47     NA    NA
#> 48     NA    NA
#> 49     NA    NA
#> 50     NA    NA
#> 51     NA    NA
#> 52     NA    NA
#> 53   1.35  0.13
#> 54  -0.21  0.10
#> 55   1.35  0.19
#> 
#>  Group Parameters: 
#>    mu  sigma  
#>  0.03   1.02


## ----------------------------------------------------------------------------
# 3. The example code below shows how to prepare the data sets and how to conduct
#    the IRT model-data fit analysis:
## ----------------------------------------------------------------------------

## Step 1: prepare a data set for IRT
## In this example, we use the simulated mixed-item format CAT Data
## But, only items that have item responses more than 1,000 are assessed.

# find the location of items that have more than 1,000 item responses
over1000 <- which(colSums(simCAT_MX$res.dat, na.rm = TRUE) > 1000)

# (1) item metadata
x <- simCAT_MX$item.prm[over1000, ]
dim(x)
#> [1] 113   7
print(x[1:10, ])
#>     id cats model     par.1      par.2 par.3 par.4
#> 2   V2    2  2PLM 0.9152754  1.3843593    NA    NA
#> 3   V3    2  2PLM 1.3454796 -1.2554919    NA    NA
#> 5   V5    2  2PLM 1.0862914  1.7114409    NA    NA
#> 6   V6    2  2PLM 1.1311496 -0.6029080    NA    NA
#> 7   V7    2  2PLM 1.2012407 -0.4721664    NA    NA
#> 8   V8    2  2PLM 1.3244155 -0.6353713    NA    NA
#> 10 V10    2  2PLM 1.2487125  0.1381082    NA    NA
#> 11 V11    2  2PLM 1.4413208  1.2276303    NA    NA
#> 12 V12    2  2PLM 1.2077273 -0.8017795    NA    NA
#> 13 V13    2  2PLM 1.1715456 -1.0803926    NA    NA

# (2) examinee's ability estimates
score <- simCAT_MX$score
length(score)
#> [1] 30000
print(score[1:100])
#>   [1] -0.30311440 -0.67224807 -0.73474583  1.76935738 -0.91017203 -0.28448278
#>   [7]  0.81656431 -1.66434615  0.59312008 -0.35182937  0.23129679 -0.93107524
#>  [13] -0.29971993 -0.32700449 -0.22271651  1.48912121 -0.92927809  0.43453041
#>  [19] -0.01795450 -0.28365286  0.01115173 -0.76101441  0.12144273  0.83096135
#>  [25]  1.96600585 -0.83510402 -0.40268865 -0.05605526  0.72398446 -0.16026059
#>  [31] -1.09011778  1.22126764 -0.13340360 -1.28230720 -1.05581980  0.83484173
#>  [37] -0.52136360 -0.66913590 -1.08580804  1.73214834  0.56950387  0.48016332
#>  [43] -0.03472720 -2.17577824  0.44127032  0.98913071  1.43861714 -1.08133809
#>  [49] -0.69016072  0.19325797  0.89998383  1.25383167 -1.09600809  0.50519143
#>  [55] -0.51707395 -0.39474484 -0.45031102  1.85675021  1.50768131  1.06011811
#>  [61] -0.41064797  1.10960278 -0.68853387 -0.59397660 -0.65326436  0.29147751
#>  [67] -1.86787473  1.04838050 -1.14582092  1.07395234 -0.03828693  0.08445559
#>  [73]  0.34582524  0.72300905  0.84448992 -1.86488055  0.77121937  1.66573208
#>  [79]  0.10311673 -0.50768866 -1.60992457 -0.23074682  0.16162326  0.26091160
#>  [85]  0.60682182  0.65415304 -0.69923141  1.07545766  0.24060267 -0.93542383
#>  [91]  1.24988766 -0.01826940  1.27403936  0.10985621 -1.19092047  0.79614598
#>  [97]  0.62302338 -0.89455596 -0.03472720  0.20250837

# (3) response data
data <- simCAT_MX$res.dat[, over1000]
dim(data)
#> [1] 30000   113
print(data[1:20, 1:6])
#>       Item.dc.2 Item.dc.3 Item.dc.5 Item.dc.6 Item.dc.7 Item.dc.8
#>  [1,]        NA        NA        NA        NA         0         1
#>  [2,]        NA        NA        NA        NA         0         1
#>  [3,]        NA        NA        NA        NA         1         1
#>  [4,]        NA        NA         0        NA        NA        NA
#>  [5,]        NA         1        NA         0         1         1
#>  [6,]        NA         0        NA         0         1         0
#>  [7,]        NA        NA        NA        NA        NA        NA
#>  [8,]        NA         1        NA         1         1         0
#>  [9,]        NA        NA         0        NA        NA        NA
#> [10,]        NA         0        NA         1         1         0
#> [11,]        NA        NA         0        NA        NA        NA
#> [12,]        NA         1        NA         0         1         1
#> [13,]        NA         0        NA         1         1         0
#> [14,]        NA        NA        NA        NA         1        NA
#> [15,]        NA        NA        NA         1         1         1
#> [16,]         1        NA         0        NA        NA        NA
#> [17,]        NA         0        NA         0         1         0
#> [18,]        NA        NA        NA        NA        NA        NA
#> [19,]        NA         0        NA         0         1         1
#> [20,]        NA        NA        NA        NA        NA        NA

## Step 2: Compute the IRT mode-data fit statistics
# (1) the use of "equal.width"
fit1 <- irtfit(
  x = x, score = score, data = data, group.method = "equal.width",
  n.width = 11, loc.theta = "average", range.score = c(-4, 4), D = 1, alpha = 0.05,
  missing = NA, overSR = 2.5
)

# what kinds of internal objects does the results have?
names(fit1)
#> [1] "fit_stat"            "contingency.fitstat" "contingency.plot"   
#> [4] "item_df"             "individual.info"     "ancillary"          
#> [7] "call"

# show the results of the fit statistics
fit1$fit_stat[1:10, ]
#>     id      X2      G2 df.X2 df.G2 crit.val.X2 crit.val.G2 p.X2 p.G2 outfit
#> 1   V2  75.070  75.209     8    10       15.51       18.31    0    0  1.018
#> 2   V3 186.880 168.082     8    10       15.51       18.31    0    0  1.124
#> 3   V5 151.329 139.213     8    10       15.51       18.31    0    0  1.133
#> 4   V6 178.409 157.911     8    10       15.51       18.31    0    0  1.056
#> 5   V7 185.438 170.360     9    11       16.92       19.68    0    0  1.078
#> 6   V8 209.653 193.001     8    10       15.51       18.31    0    0  1.098
#> 7  V10 267.444 239.563     9    11       16.92       19.68    0    0  1.097
#> 8  V11 148.896 133.209     7     9       14.07       16.92    0    0  1.129
#> 9  V12 139.295 125.647     9    11       16.92       19.68    0    0  1.065
#> 10 V13 128.422 117.439     9    11       16.92       19.68    0    0  1.075
#>    infit     N overSR.prop
#> 1  1.016  2018       0.364
#> 2  1.090 11041       0.636
#> 3  1.111  5181       0.727
#> 4  1.045 13599       0.545
#> 5  1.059 18293       0.455
#> 6  1.075 16163       0.636
#> 7  1.073 19702       0.727
#> 8  1.083 13885       0.455
#> 9  1.051 12118       0.636
#> 10 1.059 10719       0.545

# show the contingency tables for the first item (dichotomous)
fit1$contingency.fitstat[[1]]
#>    total obs.freq.0 obs.freq.1 exp.freq.0 exp.freq.1 obs.prop.0 obs.prop.1
#> 1      8          5          3   6.102331   1.897669  0.6250000  0.3750000
#> 2     14          8          6   9.969510   4.030490  0.5714286  0.4285714
#> 3     60         34         26  40.253757  19.746243  0.5666667  0.4333333
#> 4    185         99         86 115.264928  69.735072  0.5351351  0.4648649
#> 5    240        115        125 138.368078 101.631922  0.4791667  0.5208333
#> 6    349        145        204 185.031440 163.968560  0.4154728  0.5845272
#> 7    325        114        211 155.483116 169.516884  0.3507692  0.6492308
#> 8    246         82        164 108.731822 137.268178  0.3333333  0.6666667
#> 9    377        139        238 154.062263 222.937737  0.3687003  0.6312997
#> 10   214         78        136  72.645447 141.354553  0.3644860  0.6355140
#>    exp.prob.0 exp.prob.1   raw.rsd.0   raw.rsd.1
#> 1   0.7627914  0.2372086 -0.13779141  0.13779141
#> 2   0.7121079  0.2878921 -0.14067932  0.14067932
#> 3   0.6708959  0.3291041 -0.10422928  0.10422928
#> 4   0.6230537  0.3769463 -0.08791853  0.08791853
#> 5   0.5765337  0.4234663 -0.09736699  0.09736699
#> 6   0.5301760  0.4698240 -0.11470327  0.11470327
#> 7   0.4784096  0.5215904 -0.12764036  0.12764036
#> 8   0.4419993  0.5580007 -0.10866594  0.10866594
#> 9   0.4086532  0.5913468 -0.03995295  0.03995295
#> 10  0.3394647  0.6605353  0.02502128 -0.02502128


# (2) the use of "equal.freq"
fit2 <- irtfit(
  x = x, score = score, data = data, group.method = "equal.freq",
  n.width = 11, loc.theta = "average", range.score = c(-4, 4), D = 1, alpha = 0.05,
  missing = NA
)

# show the results of the fit statistics
fit2$fit_stat[1:10, ]
#>     id      X2      G2 df.X2 df.G2 crit.val.X2 crit.val.G2 p.X2 p.G2 outfit
#> 1   V2  79.629  79.941     9    11       16.92       19.68    0    0  1.018
#> 2   V3 200.266 180.620     9    11       16.92       19.68    0    0  1.124
#> 3   V5 148.742 138.244     9    11       16.92       19.68    0    0  1.133
#> 4   V6 141.905 135.027     9    11       16.92       19.68    0    0  1.056
#> 5   V7 189.680 178.200     9    11       16.92       19.68    0    0  1.078
#> 6   V8 214.014 198.621     9    11       16.92       19.68    0    0  1.098
#> 7  V10 258.335 237.874     9    11       16.92       19.68    0    0  1.097
#> 8  V11 162.225 146.413     9    11       16.92       19.68    0    0  1.129
#> 9  V12 147.600 136.192     9    11       16.92       19.68    0    0  1.065
#> 10 V13 141.090 132.064     9    11       16.92       19.68    0    0  1.075
#>    infit     N overSR.prop
#> 1  1.016  2018       0.636
#> 2  1.090 11041       0.636
#> 3  1.111  5181       0.727
#> 4  1.045 13599       0.636
#> 5  1.059 18293       0.455
#> 6  1.075 16163       0.545
#> 7  1.073 19702       0.636
#> 8  1.083 13885       0.636
#> 9  1.051 12118       0.455
#> 10 1.059 10719       0.636

# show the contingency table for the fourth item (polytomous)
fit2$contingency.fitstat[[4]]
#>    total obs.freq.0 obs.freq.1 exp.freq.0 exp.freq.1 obs.prop.0 obs.prop.1
#> 1   1156        901        255   932.9066   223.0934  0.7794118  0.2205882
#> 2   1304        928        376   938.1209   365.8791  0.7116564  0.2883436
#> 3   1248        786        462   821.9101   426.0899  0.6298077  0.3701923
#> 4   1235        760        475   747.7321   487.2679  0.6153846  0.3846154
#> 5   1222        694        528   686.2295   535.7705  0.5679214  0.4320786
#> 6   1249        683        566   659.9220   589.0780  0.5468375  0.4531625
#> 7   1238        652        586   610.7195   627.2805  0.5266559  0.4733441
#> 8   1231        612        619   554.8880   676.1120  0.4971568  0.5028432
#> 9   1241        571        670   501.1981   739.8019  0.4601128  0.5398872
#> 10  1238        495        743   434.7901   803.2099  0.3998384  0.6001616
#> 11  1237        467        770   325.5017   911.4983  0.3775263  0.6224737
#>    exp.prob.0 exp.prob.1    raw.rsd.0    raw.rsd.1
#> 1   0.8070127  0.1929873 -0.027600903  0.027600903
#> 2   0.7194179  0.2805821 -0.007761448  0.007761448
#> 3   0.6585818  0.3414182 -0.028774123  0.028774123
#> 4   0.6054511  0.3945489  0.009933503 -0.009933503
#> 5   0.5615626  0.4384374  0.006358826 -0.006358826
#> 6   0.5283603  0.4716397  0.018477151 -0.018477151
#> 7   0.4933114  0.5066886  0.033344472 -0.033344472
#> 8   0.4507620  0.5492380  0.046394802 -0.046394802
#> 9   0.4038663  0.5961337  0.056246491 -0.056246491
#> 10  0.3512036  0.6487964  0.048634854 -0.048634854
#> 11  0.2631380  0.7368620  0.114388254 -0.114388254

## Step 3: Draw the IRT residual plots
# 1. the dichotomous item
# (1) both raw and standardized residual plots using the object "fit1"
plot(x = fit1, item.loc = 1, type = "both", ci.method = "wald", ylim.sr.adjust = TRUE)

#>                   interval       point total obs.freq.0 obs.freq.1 obs.prop.0
#> 1  [-0.1218815,0.08512996) -0.02529272     3          3          0  1.0000000
#> 2   [0.08512996,0.2921415)  0.18431014     5          2          3  0.4000000
#> 3     [0.2921415,0.499153)  0.39488272    14          8          6  0.5714286
#> 4     [0.499153,0.7061645)  0.60618911    60         34         26  0.5666667
#> 5     [0.7061645,0.913176)  0.83531169   185         99         86  0.5351351
#> 6      [0.913176,1.120187)  1.04723712   240        115        125  0.4791667
#> 7      [1.120187,1.327199)  1.25232143   349        145        204  0.4154728
#> 8       [1.327199,1.53421)  1.47877397   325        114        211  0.3507692
#> 9       [1.53421,1.741222)  1.63898436   246         82        164  0.3333333
#> 10     [1.741222,1.948233)  1.78810197   377        139        238  0.3687003
#> 11     [1.948233,2.155245]  2.11166019   214         78        136  0.3644860
#>    obs.prop.1 exp.prob.0 exp.prob.1   raw.rsd.0   raw.rsd.1       se.0
#> 1   0.0000000  0.7841844  0.2158156  0.21581559 -0.21581559 0.23751437
#> 2   0.6000000  0.7499556  0.2500444 -0.34995561  0.34995561 0.19366063
#> 3   0.4285714  0.7121079  0.2878921 -0.14067932  0.14067932 0.12101070
#> 4   0.4333333  0.6708959  0.3291041 -0.10422928  0.10422928 0.06066226
#> 5   0.4648649  0.6230537  0.3769463 -0.08791853  0.08791853 0.03563007
#> 6   0.5208333  0.5765337  0.4234663 -0.09736699  0.09736699 0.03189453
#> 7   0.5845272  0.5301760  0.4698240 -0.11470327  0.11470327 0.02671560
#> 8   0.6492308  0.4784096  0.5215904 -0.12764036  0.12764036 0.02770914
#> 9   0.6666667  0.4419993  0.5580007 -0.10866594  0.10866594 0.03166362
#> 10  0.6312997  0.4086532  0.5913468 -0.03995295  0.03995295 0.02531791
#> 11  0.6355140  0.3394647  0.6605353  0.02502128 -0.02502128 0.03236968
#>          se.1  std.rsd.0  std.rsd.1
#> 1  0.23751437  0.9086423 -0.9086423
#> 2  0.19366063 -1.8070560  1.8070560
#> 3  0.12101070 -1.1625362  1.1625362
#> 4  0.06066226 -1.7181899  1.7181899
#> 5  0.03563007 -2.4675377  2.4675377
#> 6  0.03189453 -3.0527806  3.0527806
#> 7  0.02671560 -4.2934941  4.2934941
#> 8  0.02770914 -4.6064351  4.6064351
#> 9  0.03166362 -3.4318859  3.4318859
#> 10 0.02531791 -1.5780508  1.5780508
#> 11 0.03236968  0.7729850 -0.7729850

# (2) the raw residual plots using the object "fit1"
plot(x = fit1, item.loc = 1, type = "icc", ci.method = "wald", ylim.sr.adjust = TRUE)

#>                   interval       point total obs.freq.0 obs.freq.1 obs.prop.0
#> 1  [-0.1218815,0.08512996) -0.02529272     3          3          0  1.0000000
#> 2   [0.08512996,0.2921415)  0.18431014     5          2          3  0.4000000
#> 3     [0.2921415,0.499153)  0.39488272    14          8          6  0.5714286
#> 4     [0.499153,0.7061645)  0.60618911    60         34         26  0.5666667
#> 5     [0.7061645,0.913176)  0.83531169   185         99         86  0.5351351
#> 6      [0.913176,1.120187)  1.04723712   240        115        125  0.4791667
#> 7      [1.120187,1.327199)  1.25232143   349        145        204  0.4154728
#> 8       [1.327199,1.53421)  1.47877397   325        114        211  0.3507692
#> 9       [1.53421,1.741222)  1.63898436   246         82        164  0.3333333
#> 10     [1.741222,1.948233)  1.78810197   377        139        238  0.3687003
#> 11     [1.948233,2.155245]  2.11166019   214         78        136  0.3644860
#>    obs.prop.1 exp.prob.0 exp.prob.1   raw.rsd.0   raw.rsd.1       se.0
#> 1   0.0000000  0.7841844  0.2158156  0.21581559 -0.21581559 0.23751437
#> 2   0.6000000  0.7499556  0.2500444 -0.34995561  0.34995561 0.19366063
#> 3   0.4285714  0.7121079  0.2878921 -0.14067932  0.14067932 0.12101070
#> 4   0.4333333  0.6708959  0.3291041 -0.10422928  0.10422928 0.06066226
#> 5   0.4648649  0.6230537  0.3769463 -0.08791853  0.08791853 0.03563007
#> 6   0.5208333  0.5765337  0.4234663 -0.09736699  0.09736699 0.03189453
#> 7   0.5845272  0.5301760  0.4698240 -0.11470327  0.11470327 0.02671560
#> 8   0.6492308  0.4784096  0.5215904 -0.12764036  0.12764036 0.02770914
#> 9   0.6666667  0.4419993  0.5580007 -0.10866594  0.10866594 0.03166362
#> 10  0.6312997  0.4086532  0.5913468 -0.03995295  0.03995295 0.02531791
#> 11  0.6355140  0.3394647  0.6605353  0.02502128 -0.02502128 0.03236968
#>          se.1  std.rsd.0  std.rsd.1
#> 1  0.23751437  0.9086423 -0.9086423
#> 2  0.19366063 -1.8070560  1.8070560
#> 3  0.12101070 -1.1625362  1.1625362
#> 4  0.06066226 -1.7181899  1.7181899
#> 5  0.03563007 -2.4675377  2.4675377
#> 6  0.03189453 -3.0527806  3.0527806
#> 7  0.02671560 -4.2934941  4.2934941
#> 8  0.02770914 -4.6064351  4.6064351
#> 9  0.03166362 -3.4318859  3.4318859
#> 10 0.02531791 -1.5780508  1.5780508
#> 11 0.03236968  0.7729850 -0.7729850

# (3) the standardized residual plots using the object "fit1"
plot(x = fit1, item.loc = 113, type = "sr", ci.method = "wald", ylim.sr.adjust = TRUE)

#>                 interval     point total obs.freq.0 obs.freq.1 obs.freq.2
#> 1  [0.3564295,0.5199582) 0.3564295     1          1          0          0
#> 2  [0.5199582,0.6834869) 0.6081321     5          3          2          0
#> 3  [0.6834869,0.8470155) 0.7400138    15          5         10          0
#> 4   [0.8470155,1.010544) 0.8866202    55          5         15         34
#> 5    [1.010544,1.174073) 1.0821064   133          6         40         53
#> 6    [1.174073,1.337602) 1.2832293   260          8         37        153
#> 7     [1.337602,1.50113) 1.4747336    98          0         23         57
#> 8     [1.50113,1.664659) 1.5311735   306          0          7         85
#> 9    [1.664659,1.828188) 1.7632607   418          0          0        145
#> 10   [1.828188,1.991716) 1.8577191    69          0          0          0
#> 11   [1.991716,2.155245] 2.1021956   263          0          0          0
#>    obs.freq.3 obs.prop.0 obs.prop.1 obs.prop.2 obs.prop.3  exp.prob.0
#> 1           0 1.00000000 0.00000000  0.0000000 0.00000000 0.196511833
#> 2           0 0.60000000 0.40000000  0.0000000 0.00000000 0.130431315
#> 3           0 0.33333333 0.66666667  0.0000000 0.00000000 0.102631449
#> 4           1 0.09090909 0.27272727  0.6181818 0.01818182 0.077129446
#> 5          34 0.04511278 0.30075188  0.3984962 0.25563910 0.051169395
#> 6          62 0.03076923 0.14230769  0.5884615 0.23846154 0.032494074
#> 7          18 0.00000000 0.23469388  0.5816327 0.18367347 0.020534959
#> 8         214 0.00000000 0.02287582  0.2777778 0.69934641 0.017857642
#> 9         273 0.00000000 0.00000000  0.3468900 0.65311005 0.009866868
#> 10         69 0.00000000 0.00000000  0.0000000 1.00000000 0.007690015
#> 11        263 0.00000000 0.00000000  0.0000000 1.00000000 0.003962699
#>    exp.prob.1 exp.prob.2 exp.prob.3    raw.rsd.0    raw.rsd.1   raw.rsd.2
#> 1  0.31299790  0.3472692  0.1432210  0.803488167 -0.312997903 -0.34726922
#> 2  0.27025065  0.3900531  0.2092649  0.469568685  0.129749354 -0.39005312
#> 3  0.24407213  0.4043226  0.2489738  0.230701885  0.422594537 -0.40432265
#> 4  0.21379299  0.4127992  0.2962784  0.013779645  0.058934282  0.20538261
#> 5  0.17398130  0.4120662  0.3627831 -0.006056613  0.126770584 -0.01356995
#> 6  0.13632441  0.3983962  0.4327853 -0.001724843  0.005983284  0.19006531
#> 7  0.10523862  0.3756891  0.4985373 -0.020534959  0.129455259  0.20594357
#> 8  0.09707782  0.3676106  0.5174539 -0.017857642 -0.074201998 -0.08983281
#> 9  0.06836048  0.3299158  0.5918569 -0.009866868 -0.068360484  0.01697418
#> 10 0.05880602  0.3132481  0.6202558 -0.007690015 -0.058806016 -0.31324812
#> 11 0.03912356  0.2690653  0.6878484 -0.003962699 -0.039123555 -0.26906531
#>      raw.rsd.3        se.0       se.1       se.2       se.3  std.rsd.0
#> 1  -0.14322104 0.397359953 0.46371351 0.47610220 0.35029812  2.0220663
#> 2  -0.20926492 0.150611412 0.19860274 0.21813376 0.18191928  3.1177497
#> 3  -0.24897378 0.078357401 0.11090564 0.12671381 0.11165000  2.9442258
#> 4  -0.27809653 0.035974863 0.05528201 0.06638675 0.06156999  0.3830354
#> 5  -0.10714402 0.019106171 0.03287157 0.04267975 0.04169091 -0.3169978
#> 6  -0.19432375 0.010996190 0.02128019 0.03036171 0.03072722 -0.1568583
#> 7  -0.31486387 0.014326112 0.03099761 0.04892172 0.05050741 -1.4333937
#> 8   0.18189246 0.007570744 0.01692484 0.02756294 0.02856568 -2.3587698
#> 9   0.06125317 0.004834464 0.01234350 0.02299737 0.02403956 -2.0409436
#> 10  0.37974416 0.010516294 0.02832213 0.05583668 0.05842604 -0.7312476
#> 11  0.31215156 0.003873963 0.01195570 0.02734578 0.02857270 -1.0229057
#>     std.rsd.1  std.rsd.2  std.rsd.3
#> 1  -0.6749812 -0.7294006 -0.4088547
#> 2   0.6533110 -1.7881373 -1.1503175
#> 3   3.8103971 -3.1908333 -2.2299488
#> 4   1.0660662  3.0937290 -4.5167547
#> 5   3.8565422 -0.3179482 -2.5699613
#> 6   0.2811669  6.2600333 -6.3241558
#> 7   4.1762987  4.2096551 -6.2340132
#> 8  -4.3842081 -3.2591881  6.3675177
#> 9  -5.5381760  0.7380923  2.5480159
#> 10 -2.0763275 -5.6100775  6.4995706
#> 11 -3.2723764 -9.8393733 10.9248190

# 2. the polytomous item
# (1) both raw and standardized residual plots using the object "fit1"
plot(x = fit1, item.loc = 113, type = "both", ci.method = "wald", ylim.sr.adjust = TRUE)

#>                 interval     point total obs.freq.0 obs.freq.1 obs.freq.2
#> 1  [0.3564295,0.5199582) 0.3564295     1          1          0          0
#> 2  [0.5199582,0.6834869) 0.6081321     5          3          2          0
#> 3  [0.6834869,0.8470155) 0.7400138    15          5         10          0
#> 4   [0.8470155,1.010544) 0.8866202    55          5         15         34
#> 5    [1.010544,1.174073) 1.0821064   133          6         40         53
#> 6    [1.174073,1.337602) 1.2832293   260          8         37        153
#> 7     [1.337602,1.50113) 1.4747336    98          0         23         57
#> 8     [1.50113,1.664659) 1.5311735   306          0          7         85
#> 9    [1.664659,1.828188) 1.7632607   418          0          0        145
#> 10   [1.828188,1.991716) 1.8577191    69          0          0          0
#> 11   [1.991716,2.155245] 2.1021956   263          0          0          0
#>    obs.freq.3 obs.prop.0 obs.prop.1 obs.prop.2 obs.prop.3  exp.prob.0
#> 1           0 1.00000000 0.00000000  0.0000000 0.00000000 0.196511833
#> 2           0 0.60000000 0.40000000  0.0000000 0.00000000 0.130431315
#> 3           0 0.33333333 0.66666667  0.0000000 0.00000000 0.102631449
#> 4           1 0.09090909 0.27272727  0.6181818 0.01818182 0.077129446
#> 5          34 0.04511278 0.30075188  0.3984962 0.25563910 0.051169395
#> 6          62 0.03076923 0.14230769  0.5884615 0.23846154 0.032494074
#> 7          18 0.00000000 0.23469388  0.5816327 0.18367347 0.020534959
#> 8         214 0.00000000 0.02287582  0.2777778 0.69934641 0.017857642
#> 9         273 0.00000000 0.00000000  0.3468900 0.65311005 0.009866868
#> 10         69 0.00000000 0.00000000  0.0000000 1.00000000 0.007690015
#> 11        263 0.00000000 0.00000000  0.0000000 1.00000000 0.003962699
#>    exp.prob.1 exp.prob.2 exp.prob.3    raw.rsd.0    raw.rsd.1   raw.rsd.2
#> 1  0.31299790  0.3472692  0.1432210  0.803488167 -0.312997903 -0.34726922
#> 2  0.27025065  0.3900531  0.2092649  0.469568685  0.129749354 -0.39005312
#> 3  0.24407213  0.4043226  0.2489738  0.230701885  0.422594537 -0.40432265
#> 4  0.21379299  0.4127992  0.2962784  0.013779645  0.058934282  0.20538261
#> 5  0.17398130  0.4120662  0.3627831 -0.006056613  0.126770584 -0.01356995
#> 6  0.13632441  0.3983962  0.4327853 -0.001724843  0.005983284  0.19006531
#> 7  0.10523862  0.3756891  0.4985373 -0.020534959  0.129455259  0.20594357
#> 8  0.09707782  0.3676106  0.5174539 -0.017857642 -0.074201998 -0.08983281
#> 9  0.06836048  0.3299158  0.5918569 -0.009866868 -0.068360484  0.01697418
#> 10 0.05880602  0.3132481  0.6202558 -0.007690015 -0.058806016 -0.31324812
#> 11 0.03912356  0.2690653  0.6878484 -0.003962699 -0.039123555 -0.26906531
#>      raw.rsd.3        se.0       se.1       se.2       se.3  std.rsd.0
#> 1  -0.14322104 0.397359953 0.46371351 0.47610220 0.35029812  2.0220663
#> 2  -0.20926492 0.150611412 0.19860274 0.21813376 0.18191928  3.1177497
#> 3  -0.24897378 0.078357401 0.11090564 0.12671381 0.11165000  2.9442258
#> 4  -0.27809653 0.035974863 0.05528201 0.06638675 0.06156999  0.3830354
#> 5  -0.10714402 0.019106171 0.03287157 0.04267975 0.04169091 -0.3169978
#> 6  -0.19432375 0.010996190 0.02128019 0.03036171 0.03072722 -0.1568583
#> 7  -0.31486387 0.014326112 0.03099761 0.04892172 0.05050741 -1.4333937
#> 8   0.18189246 0.007570744 0.01692484 0.02756294 0.02856568 -2.3587698
#> 9   0.06125317 0.004834464 0.01234350 0.02299737 0.02403956 -2.0409436
#> 10  0.37974416 0.010516294 0.02832213 0.05583668 0.05842604 -0.7312476
#> 11  0.31215156 0.003873963 0.01195570 0.02734578 0.02857270 -1.0229057
#>     std.rsd.1  std.rsd.2  std.rsd.3
#> 1  -0.6749812 -0.7294006 -0.4088547
#> 2   0.6533110 -1.7881373 -1.1503175
#> 3   3.8103971 -3.1908333 -2.2299488
#> 4   1.0660662  3.0937290 -4.5167547
#> 5   3.8565422 -0.3179482 -2.5699613
#> 6   0.2811669  6.2600333 -6.3241558
#> 7   4.1762987  4.2096551 -6.2340132
#> 8  -4.3842081 -3.2591881  6.3675177
#> 9  -5.5381760  0.7380923  2.5480159
#> 10 -2.0763275 -5.6100775  6.4995706
#> 11 -3.2723764 -9.8393733 10.9248190

# (2) the raw residual plots using the object "fit1"
plot(x = fit1, item.loc = 113, type = "icc", ci.method = "wald", layout.col = 2, ylim.sr.adjust = TRUE)

#>                 interval     point total obs.freq.0 obs.freq.1 obs.freq.2
#> 1  [0.3564295,0.5199582) 0.3564295     1          1          0          0
#> 2  [0.5199582,0.6834869) 0.6081321     5          3          2          0
#> 3  [0.6834869,0.8470155) 0.7400138    15          5         10          0
#> 4   [0.8470155,1.010544) 0.8866202    55          5         15         34
#> 5    [1.010544,1.174073) 1.0821064   133          6         40         53
#> 6    [1.174073,1.337602) 1.2832293   260          8         37        153
#> 7     [1.337602,1.50113) 1.4747336    98          0         23         57
#> 8     [1.50113,1.664659) 1.5311735   306          0          7         85
#> 9    [1.664659,1.828188) 1.7632607   418          0          0        145
#> 10   [1.828188,1.991716) 1.8577191    69          0          0          0
#> 11   [1.991716,2.155245] 2.1021956   263          0          0          0
#>    obs.freq.3 obs.prop.0 obs.prop.1 obs.prop.2 obs.prop.3  exp.prob.0
#> 1           0 1.00000000 0.00000000  0.0000000 0.00000000 0.196511833
#> 2           0 0.60000000 0.40000000  0.0000000 0.00000000 0.130431315
#> 3           0 0.33333333 0.66666667  0.0000000 0.00000000 0.102631449
#> 4           1 0.09090909 0.27272727  0.6181818 0.01818182 0.077129446
#> 5          34 0.04511278 0.30075188  0.3984962 0.25563910 0.051169395
#> 6          62 0.03076923 0.14230769  0.5884615 0.23846154 0.032494074
#> 7          18 0.00000000 0.23469388  0.5816327 0.18367347 0.020534959
#> 8         214 0.00000000 0.02287582  0.2777778 0.69934641 0.017857642
#> 9         273 0.00000000 0.00000000  0.3468900 0.65311005 0.009866868
#> 10         69 0.00000000 0.00000000  0.0000000 1.00000000 0.007690015
#> 11        263 0.00000000 0.00000000  0.0000000 1.00000000 0.003962699
#>    exp.prob.1 exp.prob.2 exp.prob.3    raw.rsd.0    raw.rsd.1   raw.rsd.2
#> 1  0.31299790  0.3472692  0.1432210  0.803488167 -0.312997903 -0.34726922
#> 2  0.27025065  0.3900531  0.2092649  0.469568685  0.129749354 -0.39005312
#> 3  0.24407213  0.4043226  0.2489738  0.230701885  0.422594537 -0.40432265
#> 4  0.21379299  0.4127992  0.2962784  0.013779645  0.058934282  0.20538261
#> 5  0.17398130  0.4120662  0.3627831 -0.006056613  0.126770584 -0.01356995
#> 6  0.13632441  0.3983962  0.4327853 -0.001724843  0.005983284  0.19006531
#> 7  0.10523862  0.3756891  0.4985373 -0.020534959  0.129455259  0.20594357
#> 8  0.09707782  0.3676106  0.5174539 -0.017857642 -0.074201998 -0.08983281
#> 9  0.06836048  0.3299158  0.5918569 -0.009866868 -0.068360484  0.01697418
#> 10 0.05880602  0.3132481  0.6202558 -0.007690015 -0.058806016 -0.31324812
#> 11 0.03912356  0.2690653  0.6878484 -0.003962699 -0.039123555 -0.26906531
#>      raw.rsd.3        se.0       se.1       se.2       se.3  std.rsd.0
#> 1  -0.14322104 0.397359953 0.46371351 0.47610220 0.35029812  2.0220663
#> 2  -0.20926492 0.150611412 0.19860274 0.21813376 0.18191928  3.1177497
#> 3  -0.24897378 0.078357401 0.11090564 0.12671381 0.11165000  2.9442258
#> 4  -0.27809653 0.035974863 0.05528201 0.06638675 0.06156999  0.3830354
#> 5  -0.10714402 0.019106171 0.03287157 0.04267975 0.04169091 -0.3169978
#> 6  -0.19432375 0.010996190 0.02128019 0.03036171 0.03072722 -0.1568583
#> 7  -0.31486387 0.014326112 0.03099761 0.04892172 0.05050741 -1.4333937
#> 8   0.18189246 0.007570744 0.01692484 0.02756294 0.02856568 -2.3587698
#> 9   0.06125317 0.004834464 0.01234350 0.02299737 0.02403956 -2.0409436
#> 10  0.37974416 0.010516294 0.02832213 0.05583668 0.05842604 -0.7312476
#> 11  0.31215156 0.003873963 0.01195570 0.02734578 0.02857270 -1.0229057
#>     std.rsd.1  std.rsd.2  std.rsd.3
#> 1  -0.6749812 -0.7294006 -0.4088547
#> 2   0.6533110 -1.7881373 -1.1503175
#> 3   3.8103971 -3.1908333 -2.2299488
#> 4   1.0660662  3.0937290 -4.5167547
#> 5   3.8565422 -0.3179482 -2.5699613
#> 6   0.2811669  6.2600333 -6.3241558
#> 7   4.1762987  4.2096551 -6.2340132
#> 8  -4.3842081 -3.2591881  6.3675177
#> 9  -5.5381760  0.7380923  2.5480159
#> 10 -2.0763275 -5.6100775  6.4995706
#> 11 -3.2723764 -9.8393733 10.9248190

# (3) the standardized residual plots using the object "fit1"
plot(x = fit1, item.loc = 113, type = "sr", ci.method = "wald", layout.col = 4, ylim.sr.adjust = TRUE)

#>                 interval     point total obs.freq.0 obs.freq.1 obs.freq.2
#> 1  [0.3564295,0.5199582) 0.3564295     1          1          0          0
#> 2  [0.5199582,0.6834869) 0.6081321     5          3          2          0
#> 3  [0.6834869,0.8470155) 0.7400138    15          5         10          0
#> 4   [0.8470155,1.010544) 0.8866202    55          5         15         34
#> 5    [1.010544,1.174073) 1.0821064   133          6         40         53
#> 6    [1.174073,1.337602) 1.2832293   260          8         37        153
#> 7     [1.337602,1.50113) 1.4747336    98          0         23         57
#> 8     [1.50113,1.664659) 1.5311735   306          0          7         85
#> 9    [1.664659,1.828188) 1.7632607   418          0          0        145
#> 10   [1.828188,1.991716) 1.8577191    69          0          0          0
#> 11   [1.991716,2.155245] 2.1021956   263          0          0          0
#>    obs.freq.3 obs.prop.0 obs.prop.1 obs.prop.2 obs.prop.3  exp.prob.0
#> 1           0 1.00000000 0.00000000  0.0000000 0.00000000 0.196511833
#> 2           0 0.60000000 0.40000000  0.0000000 0.00000000 0.130431315
#> 3           0 0.33333333 0.66666667  0.0000000 0.00000000 0.102631449
#> 4           1 0.09090909 0.27272727  0.6181818 0.01818182 0.077129446
#> 5          34 0.04511278 0.30075188  0.3984962 0.25563910 0.051169395
#> 6          62 0.03076923 0.14230769  0.5884615 0.23846154 0.032494074
#> 7          18 0.00000000 0.23469388  0.5816327 0.18367347 0.020534959
#> 8         214 0.00000000 0.02287582  0.2777778 0.69934641 0.017857642
#> 9         273 0.00000000 0.00000000  0.3468900 0.65311005 0.009866868
#> 10         69 0.00000000 0.00000000  0.0000000 1.00000000 0.007690015
#> 11        263 0.00000000 0.00000000  0.0000000 1.00000000 0.003962699
#>    exp.prob.1 exp.prob.2 exp.prob.3    raw.rsd.0    raw.rsd.1   raw.rsd.2
#> 1  0.31299790  0.3472692  0.1432210  0.803488167 -0.312997903 -0.34726922
#> 2  0.27025065  0.3900531  0.2092649  0.469568685  0.129749354 -0.39005312
#> 3  0.24407213  0.4043226  0.2489738  0.230701885  0.422594537 -0.40432265
#> 4  0.21379299  0.4127992  0.2962784  0.013779645  0.058934282  0.20538261
#> 5  0.17398130  0.4120662  0.3627831 -0.006056613  0.126770584 -0.01356995
#> 6  0.13632441  0.3983962  0.4327853 -0.001724843  0.005983284  0.19006531
#> 7  0.10523862  0.3756891  0.4985373 -0.020534959  0.129455259  0.20594357
#> 8  0.09707782  0.3676106  0.5174539 -0.017857642 -0.074201998 -0.08983281
#> 9  0.06836048  0.3299158  0.5918569 -0.009866868 -0.068360484  0.01697418
#> 10 0.05880602  0.3132481  0.6202558 -0.007690015 -0.058806016 -0.31324812
#> 11 0.03912356  0.2690653  0.6878484 -0.003962699 -0.039123555 -0.26906531
#>      raw.rsd.3        se.0       se.1       se.2       se.3  std.rsd.0
#> 1  -0.14322104 0.397359953 0.46371351 0.47610220 0.35029812  2.0220663
#> 2  -0.20926492 0.150611412 0.19860274 0.21813376 0.18191928  3.1177497
#> 3  -0.24897378 0.078357401 0.11090564 0.12671381 0.11165000  2.9442258
#> 4  -0.27809653 0.035974863 0.05528201 0.06638675 0.06156999  0.3830354
#> 5  -0.10714402 0.019106171 0.03287157 0.04267975 0.04169091 -0.3169978
#> 6  -0.19432375 0.010996190 0.02128019 0.03036171 0.03072722 -0.1568583
#> 7  -0.31486387 0.014326112 0.03099761 0.04892172 0.05050741 -1.4333937
#> 8   0.18189246 0.007570744 0.01692484 0.02756294 0.02856568 -2.3587698
#> 9   0.06125317 0.004834464 0.01234350 0.02299737 0.02403956 -2.0409436
#> 10  0.37974416 0.010516294 0.02832213 0.05583668 0.05842604 -0.7312476
#> 11  0.31215156 0.003873963 0.01195570 0.02734578 0.02857270 -1.0229057
#>     std.rsd.1  std.rsd.2  std.rsd.3
#> 1  -0.6749812 -0.7294006 -0.4088547
#> 2   0.6533110 -1.7881373 -1.1503175
#> 3   3.8103971 -3.1908333 -2.2299488
#> 4   1.0660662  3.0937290 -4.5167547
#> 5   3.8565422 -0.3179482 -2.5699613
#> 6   0.2811669  6.2600333 -6.3241558
#> 7   4.1762987  4.2096551 -6.2340132
#> 8  -4.3842081 -3.2591881  6.3675177
#> 9  -5.5381760  0.7380923  2.5480159
#> 10 -2.0763275 -5.6100775  6.4995706
#> 11 -3.2723764 -9.8393733 10.9248190

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.