The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
In this tutorial, we will have a closer look at the object returned
by calling run_mcmc()
on a network model. Understanding the
structure of the object containing the results of a run is important for
model diagnostics and interpretation.
To quickly obtain an MCMC run output for us to examine, let’s run the
simple model aquarium_mod
which is provided with the
package. Feel free to read the help ?aquarium_mod
if you
are curious about the model itself.
library(isotracer)
aquarium_mod<- run_mcmc(aquarium_mod, iter = 1000) fit
By default, run_mcmc()
returns an mcmc.list
object. An mcmc.list
has a simple format to store the
content of parallel MCMC chains:
length(fit)
## [1] 4
str(fit[[1]])
## 'mcmc' num [1:500, 1:8] 0.139 0.19 0.163 0.197 0.164 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:8] "eta" "lambda_algae" "lambda_daphnia" "lambda_NH4" ...
## - attr(*, "mcpar")= num [1:3] 501 1000 1
The output above can seem a little obscure if you are not familiar
with R data structures, but in a nutshell it tells us that the
mcmc.list
is basically a list with one element per chain,
each chain being stored as a matrix.
The mcmc.list
class is implemented by the coda package, and it
has the advantage of being recognized by many other R packages dealing
with Bayesian MCMC such as bayesplot of
ggmcmc.
In the isotracer package, the returned
fit
is very slightly extended compared to the base
mcmc.list
class:
class(fit)
## [1] "networkModelStanfit" "mcmc.list"
By having also a networkModelStanfit
class, the output
from run_mcmc()
can be recognized automatically by some
methods implemented in isotracer, such as
plot()
:
plot(fit)
# Note: the figure below only shows a few of the traceplots for vignette concision
An mcmc.list
object can be converted to an even simpler,
flat matrix:
<- as.matrix(fit)
z head(z)
## eta lambda_algae lambda_daphnia lambda_NH4 upsilon_algae_to_daphnia
## [1,] 0.1388709 0.07081796 0.025593596 0.09396715 0.09958580
## [2,] 0.1904065 0.07192057 0.028120887 0.04813799 0.08037595
## [3,] 0.1625200 0.09480659 0.058425488 0.08378287 0.06431398
## [4,] 0.1970115 0.12314793 0.011265605 0.18970227 0.11141167
## [5,] 0.1639239 0.15948200 0.009692098 0.21106388 0.09964886
## [6,] 0.1368046 0.22078933 0.008393745 0.13363175 0.09573631
## upsilon_daphnia_to_NH4 upsilon_NH4_to_algae zeta
## [1,] 0.04127811 0.3031734 0.2867592
## [2,] 0.04224113 0.3556842 0.4337270
## [3,] 0.04083699 0.3181253 0.6070085
## [4,] 0.04253740 0.2923228 0.5730571
## [5,] 0.04495138 0.2986779 0.4918875
## [6,] 0.04213412 0.2952007 0.4537903
str(z)
## num [1:2000, 1:8] 0.139 0.19 0.163 0.197 0.164 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:8] "eta" "lambda_algae" "lambda_daphnia" "lambda_NH4" ...
or to a data frame:
<- as.data.frame(as.matrix(fit))
z head(z)
## eta lambda_algae lambda_daphnia lambda_NH4 upsilon_algae_to_daphnia
## 1 0.1388709 0.07081796 0.025593596 0.09396715 0.09958580
## 2 0.1904065 0.07192057 0.028120887 0.04813799 0.08037595
## 3 0.1625200 0.09480659 0.058425488 0.08378287 0.06431398
## 4 0.1970115 0.12314793 0.011265605 0.18970227 0.11141167
## 5 0.1639239 0.15948200 0.009692098 0.21106388 0.09964886
## 6 0.1368046 0.22078933 0.008393745 0.13363175 0.09573631
## upsilon_daphnia_to_NH4 upsilon_NH4_to_algae zeta
## 1 0.04127811 0.3031734 0.2867592
## 2 0.04224113 0.3556842 0.4337270
## 3 0.04083699 0.3181253 0.6070085
## 4 0.04253740 0.2923228 0.5730571
## 5 0.04495138 0.2986779 0.4918875
## 6 0.04213412 0.2952007 0.4537903
str(z)
## 'data.frame': 2000 obs. of 8 variables:
## $ eta : num 0.139 0.19 0.163 0.197 0.164 ...
## $ lambda_algae : num 0.0708 0.0719 0.0948 0.1231 0.1595 ...
## $ lambda_daphnia : num 0.02559 0.02812 0.05843 0.01127 0.00969 ...
## $ lambda_NH4 : num 0.094 0.0481 0.0838 0.1897 0.2111 ...
## $ upsilon_algae_to_daphnia: num 0.0996 0.0804 0.0643 0.1114 0.0996 ...
## $ upsilon_daphnia_to_NH4 : num 0.0413 0.0422 0.0408 0.0425 0.045 ...
## $ upsilon_NH4_to_algae : num 0.303 0.356 0.318 0.292 0.299 ...
## $ zeta : num 0.287 0.434 0.607 0.573 0.492 ...
or to a tibble:
<- tibble::as_tibble(as.matrix(fit))
z z
## # A tibble: 2,000 × 8
## eta lambda_algae lambda_daphnia lambda_NH4 upsilon_algae_to_daphnia
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.139 0.0708 0.0256 0.0940 0.0996
## 2 0.190 0.0719 0.0281 0.0481 0.0804
## 3 0.163 0.0948 0.0584 0.0838 0.0643
## 4 0.197 0.123 0.0113 0.190 0.111
## 5 0.164 0.159 0.00969 0.211 0.0996
## 6 0.137 0.221 0.00839 0.134 0.0957
## 7 0.0963 0.199 0.120 0.133 0.0724
## 8 0.0729 0.0443 0.00226 0.0916 0.0598
## 9 0.103 0.0577 0.0593 0.134 0.0809
## 10 0.144 0.199 0.0214 0.156 0.0647
## # ℹ 1,990 more rows
## # ℹ 3 more variables: upsilon_daphnia_to_NH4 <dbl>, upsilon_NH4_to_algae <dbl>,
## # zeta <dbl>
Converting your output to one of those simple tabular formats can be useful if you want to manipulate and perform operations on your MCMC samples.
However, for simple manipulations, isotracer
provides
convenient methods to perform calculations on parameter chains directly
from the output of run_mcmc()
. You can thus produce derived
parameter chains directly from the mcmc.list
object,
without having to convert your output to another format:
<- fit[, "upsilon_algae_to_daphnia"] + fit[, "lambda_algae"]
algal_total_out <- 1 / algal_total_out
algal_turnover plot(algal_turnover)
You can read more about this in the vignette about calculating derived parameters.
You can combine derived parameters into a single
mcmc.list
object using the usual c()
syntax.
This can be convenient for more compact plotting or summary
calculations:
<- c("out rate" = algal_total_out, "turnover" = algal_turnover)
my_derived plot(my_derived)
summary(my_derived)
##
## Iterations = 501:1000
## Thinning interval = 1
## Number of chains = 4
## Sample size per chain = 500
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## out rate 0.1667 0.05938 0.001328 0.001919
## turnover 6.9191 2.89703 0.064779 0.124295
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## out rate 0.06913 0.1224 0.1615 0.207 0.2965
## turnover 3.37231 4.8310 6.1929 8.172 14.4653
Calling run_mcmc()
will run a Stan model behind the
scenes. Stan is great since it will let you know loudly when something
went wrong with the run, such as problems with divergent chains or low
Bayesian fraction of missing information. Such problems should
not be ignored! The Stan development team has a nice page explaining
Stan’s warnings.
In any case, if something went wrong with your run, you might want to
have a more complete output than simply the mcmc.list
object. You can ask run_mcmc()
to return the original
stanfit
object produced by Stan with:
<- run_mcmc(aquarium_mod, iter = 1000, stanfit = TRUE) fit2
fit2
is now a regular stanfit
object:
class(fit2)
## [1] "stanfit"
## attr(,"package")
## [1] "rstan"
This is a more complicated type of object than an
mcmc.list
, but it also contains much more information about
the Stan run. It also comes with the benefit of the existing methods for
stanfit
object, for example:
::plot(fit2) rstan
You can go through Stan documentation for more details about this format. If you are reading about solving Stan model issues on online forums and the suggested solutions require to examine some Stan output, that’s the object you want to look at!
For example, you can examine it with ShinyStan:
library(shinystan)
launch_shinystan(fit2)
Note that with the current version of isotracer the
parameters are indexed but not named in the stanfit
object.
That is something that will probably be improved in the future!
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.