The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
iterors
packageiterators
)iterors
)An iterator is a special type of object that generalizes the notion of a looping variable. When passed as an argument to a function that knows what to do with it, the iterator supplies a sequence of values. The iterator also maintains information about its state, in particular its current index. The iteror
package includes a number of functions for creating iterators, starting iteror
, which takes virtually any R object and turns it into an iterator object. The simplest function that operates on iterators is the nextOr
function, which when given an iterator, returns the next value of the iterator. For example, here we create an iterator object from the sequence 1 to 10, and then use nextOr
to iterate through the values:
## [1] 1
## [1] 2
You can create iterators from matrices and data frames, using the by
argument to specify whether to iterate by row or column:
## Population Income Illiteracy Life Exp Murder HS Grad Frost Area
## Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
## Population Income Illiteracy Life Exp Murder HS Grad Frost Area
## Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Iterators can also be created from functions, in which case the iterator can be an endless source of values:
## [1] 8 7 8 5
## [1] 2 6 9 9
For practical applications, iterators can be paired with foreach
to obtain parallel results quite easily:
foreach: simple, scalable parallel programming from Revolution Analytics
Use Revolution R for scalability, fault tolerance and more.
http://www.revolutionanalytics.com
> x <- matrix(rnorm(1e+06), ncol = 10000)
> itx <- iteror(x, by = "row")
> foreach(i = itx, .combine = c) %dopar% mean(i)
[1] -0.0069652059 0.0161112989 0.0080068074 -0.0120020610 0.0017168149
[6] 0.0139835943 -0.0078172106 -0.0024762273 -0.0031558268 -0.0072662893
[11] -0.0055142639 0.0015717907 -0.0100842965 -0.0123601527 0.0136420084
[16] -0.0242922105 -0.0126416949 -0.0052951152 0.0216329326 -0.0262476648
[21] 0.0041937609 0.0121253368 -0.0110165729 0.0044267635 0.0080241894
[26] 0.0042995539 -0.0102826632 0.0051185628 -0.0013970812 -0.0172380786
[31] 0.0096079613 0.0046837729 -0.0080726970 0.0083781727 -0.0234620163
[36] -0.0099883966 0.0026883628 0.0029367320 0.0205825899 0.0035303940
[41] 0.0204990426 -0.0010804987 -0.0033665481 -0.0127492019 -0.0147443195
[46] 0.0027046346 0.0016449793 0.0155575490 -0.0003488394 -0.0079238019
[51] 0.0086390030 -0.0039033309 0.0168593825 -0.0067189572 -0.0009925288
[56] -0.0162907048 -0.0059171838 0.0093806072 0.0100886929 -0.0111677408
[61] 0.0021754963 -0.0056770907 0.0081200698 -0.0029828717 -0.0163704350
[66] 0.0057266267 -0.0017156156 0.0214172738 -0.0141379874 -0.0126593342
[71] 0.0087124575 0.0040231519 0.0038515673 0.0066066908 0.0023586046
[76] -0.0044167901 -0.0090543553 0.0010806096 0.0102288061 0.0039881702
[81] -0.0054549319 -0.0127997275 -0.0031697122 -0.0016100996 -0.0143468118
[86] 0.0035904125 -0.0059399479 0.0085565480 -0.0159064868 0.0054120554
[91] -0.0084420572 0.0194448129 -0.0103192553 -0.0062924628 0.0215069258
[96] 0.0015749065 0.0109657488 0.0152237842 -0.0057181022 0.0035530715
The notion of an iterator is new to R, but should be familiar to users of languages such as Python. The iterors
package includes a number of special functions that generate iterators for some common scenarios. For example, the irnorm
function creates an iterator for which each value is drawn from a specified random normal distribution:
## [1] 0.09774304 1.59563612 0.90437062 -1.33733617 0.57970042 1.34136548
## [7] -1.42219819 -0.06227956 -0.40287959 0.92252685
## [1] -0.21930284 -0.02720825 -0.16364712 0.74866565 -0.12369808 0.97223431
## [7] -2.33364421 -0.19945448 0.64004406 -0.42723560
Similarly, the irunif
, irbinom
, and irpois
functions create iterators which draw their values from uniform, binomial, and Poisson distributions, respectively.
We can then use these functions just as we used irnorm
:
## [1] 0.02267654 0.34569108 0.94993274 0.83486260 0.54954803 0.93875799
## [7] 0.53195912 0.94297610 0.49345701 0.73865775
## [1] 0.7405980 0.8812805 0.2048728 0.5387099 0.5933485 0.7146389 0.4829133
## [8] 0.8700911 0.2238241 0.7654348
These random number generators are an indefinite process, but generally, iterators can come to an end. To specify what to do it the iterator ends, give nextOr
a second argument, named or
.
The icount
function returns an iterator that counts starting from one:
## [1] 1
## [1] 2
## [1] 3
## NULL
If you call nextOr
in a loop you can tell nextOr to break
to exit the loop.
## [1] 0
For an index of iteror
functions organized by task, see vignette("categories", "iterors")
If you are familiar with packages iterators
/itertools
/itertools2
, some functions have been moved. See vignette("cross-reference", "iterors")
To learn how to build custom iterors, see vignette("writing", "iterors")
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.