
Package ‘jobqueue’
January 30, 2025

Type Package

Title Run Interruptible Code Asynchronously

Version 1.0.1

Date 2025-01-28

Description Takes an R expression and returns a Job object with a $stop() method
which can be called to terminate the background job. Also provides timeouts
and other mechanisms for automatically terminating a background job. The
result of the expression is available synchronously via $result or
asynchronously with callbacks or through the 'promises' package framework.

URL https://cmmr.github.io/jobqueue/, https://github.com/cmmr/jobqueue

BugReports https://github.com/cmmr/jobqueue/issues

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/Needs/website rmarkdown

Config/testthat/edition 3

Config/testthat/parallel false

Depends R (>= 4.2.0)

Imports cli, later, magrittr, parallelly, promises, ps, R6, rlang,
semaphore, utils

Suggests glue, knitr, rmarkdown, testthat (>= 3.0.0)

NeedsCompilation no

Author Daniel P. Smith [aut, cre] (<https://orcid.org/0000-0002-2479-2044>),
Alkek Center for Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith01@gmail.com>

Repository CRAN

Date/Publication 2025-01-30 19:20:02 UTC

1

https://cmmr.github.io/jobqueue/
https://github.com/cmmr/jobqueue
https://github.com/cmmr/jobqueue/issues
https://orcid.org/0000-0002-2479-2044

2 Job

Contents
Job . 2
Queue . 5
Worker . 9

Index 12

Job How to Evaluate an R Expression

Description

The Job object encapsulates an expression and its evaluation parameters. It also provides a way to
check for and retrieve the result.

Active bindings

expr R expression that will be run by this Job.

vars Get or set - List of variables that will be placed into the expression’s environment before
evaluation.

reformat Get or set - function (job) for defining <Job>$result.

signal Get or set - Conditions to signal.

cpus Get or set - Number of CPUs to reserve for evaluating expr.

timeout Get or set - Time limits to apply to this Job.

proxy Get or set - Job to proxy in place of running expr.

state Get or set - The Job’s state: 'created', 'submitted', 'queued', 'dispatched', 'starting',
'running', or 'done'. Assigning to <Job>$state will trigger callback hooks.

output Get or set - Job’s raw output. Assigning to <Job>$output will change the Job’s state to
’done’.

result Result of expr. Will block until Job is finished.

hooks Currently registered callback hooks as a named list of functions. Set new hooks with
<Job>$on().

is_done TRUE or FALSE depending on if the Job’s result is ready.

uid A short string, e.g. 'J16', that uniquely identifies this Job.

Methods

Public methods:
• Job$new()

• Job$print()

• Job$on()

• Job$wait()

• Job$stop()

Job 3

Method new(): Creates a Job object defining how to run an expression on a background worker
process.
Typically you won’t need to call Job$new(). Instead, create a Queue and use <Queue>$run() to
generate Job objects.

Usage:
Job$new(
expr,
vars = NULL,
timeout = NULL,
hooks = NULL,
reformat = NULL,
signal = FALSE,
cpus = 1L,
...

)

Arguments:
expr A call or R expression wrapped in curly braces to evaluate on a worker. Will have access

to any variables defined by vars, as well as the Worker’s globals, packages, and init
configuration. See vignette('eval').

vars A named list of variables to make available to expr during evaluation. Alternatively, an
object that can be coerced to a named list with as.list(), e.g. named vector, data.frame,
or environment.

timeout A named numeric vector indicating the maximum number of seconds allowed for each
state the job passes through, or ’total’ to apply a single timeout from ’submitted’ to ’done’.
Example: timeout = c(total = 2.5, running = 1). See vignette('stops').

hooks A named list of functions to run when the Job state changes, of the form hooks =
list(created = function (worker) {...}). Names of worker hooks are typically 'created',
'submitted', 'queued', 'dispatched', 'starting', 'running', 'done', or '*' (dupli-
cates okay). See vignette('hooks').

reformat Set reformat = function (job) to define what <Job>$result should return.
The default, reformat = NULL passes <Job>$output to <Job>$result unchanged. See
vignette('results').

signal Should calling <Job>$result signal on condition objects? When FALSE, <Job>$result
will return the object without taking additional action. Setting to TRUE or a character
vector of condition classes, e.g. c('interrupt', 'error', 'warning'), will cause the
equivalent of stop(<condition>) to be called when those conditions are produced. See
vignette('results').

cpus How many CPU cores to reserve for this Job. Used to limit the number of Jobs running
simultaneously to respect <Queue>$max_cpus. Does not prevent a Job from using more
CPUs than reserved.

... Arbitrary named values to add to the returned Job object.

Returns: A Job object.

Method print(): Print method for a Job.

Usage:
Job$print(...)

4 Job

Arguments:
... Arguments are not used currently.

Returns: This Job, invisibly.

Method on(): Attach a callback function to execute when the Job enters state.

Usage:
Job$on(state, func)

Arguments:
state The name of a Job state. Typically one of:

• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'created' - After Job$new() initialization.
• 'submitted' - After <Job>$queue is assigned.
• 'queued' - After stop_id and copy_id are resolved.
• 'dispatched' - After <Job>$worker is assigned.
• 'starting' - Before evaluation begins.
• 'running' - After evaluation begins.
• 'done' - After <Job>$output is assigned.
Custom states can also be specified.

func A function that accepts a Job object as input. You can call <Job>$stop() or edit <Job>$
values and the changes will be persisted (since Jobs are reference class objects). You can
also edit/stop other queued jobs by modifying the Jobs in <Job>$queue$jobs. Return value
is ignored.

Returns: A function that when called removes this callback from the Job.

Method wait(): Blocks until the Job enters the given state.

Usage:
Job$wait(state = "done")

Arguments:
state The name of a Job state. Typically one of:

• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'created' - After Job$new() initialization.
• 'submitted' - After <Job>$queue is assigned.
• 'queued' - After stop_id and copy_id are resolved.
• 'dispatched' - After <Job>$worker is assigned.
• 'starting' - Before evaluation begins.
• 'running' - After evaluation begins.
• 'done' - After <Job>$output is assigned.
Custom states can also be specified.

Returns: This Job, invisibly.

Method stop(): Stop this Job. If the Job is running, its Worker will be restarted.

Queue 5

Usage:
Job$stop(reason = "job stopped by user", cls = NULL)

Arguments:

reason A message to include in the ’interrupt’ condition object that will be returned as the
Job’s result.

cls Character vector of additional classes to prepend to c('interrupt', 'condition').

Returns: This Job, invisibly.

Queue Assigns Jobs to a Set of Workers

Description

Jobs go in. Results come out.

Active bindings

hooks A named list of currently registered callback hooks.

jobs Get or set - List of Jobs currently managed by this Queue.

state The Queue’s state: 'starting', 'idle', 'busy', 'stopped', or 'error.'

uid Get or set - Unique identifier, e.g. 'Q1'.

tmp The Queue’s temporary directory.

workers Get or set - List of Workers used for processing Jobs.

Methods

Public methods:

• Queue$new()

• Queue$print()

• Queue$run()

• Queue$submit()

• Queue$wait()

• Queue$on()

• Queue$stop()

Method new(): Creates a pool of background processes for handling $run() and $submit()
calls. These workers are initialized according to the globals, packages, and init arguments.

Usage:

6 Queue

Queue$new(
globals = NULL,
packages = NULL,
init = NULL,
max_cpus = parallelly::availableCores(),
workers = ceiling(max_cpus * 1.2),
timeout = NULL,
hooks = NULL,
reformat = NULL,
signal = FALSE,
cpus = 1L,
stop_id = NULL,
copy_id = NULL

)

Arguments:
globals A named list of variables that all <Job>$exprs will have access to. Alternatively, an

object that can be coerced to a named list with as.list(), e.g. named vector, data.frame,
or environment.

packages Character vector of package names to load on workers.
init A call or R expression wrapped in curly braces to evaluate on each worker just once,

immediately after start-up. Will have access to variables defined by globals and assets
from packages. Returned value is ignored.

max_cpus Total number of CPU cores that can be reserved by all running Jobs (sum(<Job>$cpus)).
Does not enforce limits on actual CPU utilization.

workers How many background Worker processes to start. Set to more than max_cpus to
enable standby Workers to quickly swap out with Workers that need to restart.

timeout, hooks, reformat, signal, cpus, stop_id, copy_id Defaults for this Queue’s $run()
method. Here only, stop_id and copy_id must be either a function (job) or NULL. hooks
can set queue, worker, and/or job hooks - see the "Attaching" section in vignette('hooks').

Returns: A Queue object.

Method print(): Print method for a Queue.

Usage:
Queue$print(...)

Arguments:
... Arguments are not used currently.

Method run(): Creates a Job object and submits it to the queue for running. Any NA arguments
will be replaced with their value from Queue$new().

Usage:
Queue$run(
expr,
vars = list(),
timeout = NA,
hooks = NA,
reformat = NA,

Queue 7

signal = NA,
cpus = NA,
stop_id = NA,
copy_id = NA,
...

)

Arguments:
expr A call or R expression wrapped in curly braces to evaluate on a worker. Will have access

to any variables defined by vars, as well as the Worker’s globals, packages, and init
configuration. See vignette('eval').

vars A named list of variables to make available to expr during evaluation. Alternatively, an
object that can be coerced to a named list with as.list(), e.g. named vector, data.frame,
or environment.

timeout A named numeric vector indicating the maximum number of seconds allowed for each
state the job passes through, or ’total’ to apply a single timeout from ’submitted’ to ’done’.
Example: timeout = c(total = 2.5, running = 1). See vignette('stops').

hooks A named list of functions to run when the Job state changes, of the form hooks =
list(created = function (worker) {...}). Names of worker hooks are typically 'created',
'submitted', 'queued', 'dispatched', 'starting', 'running', 'done', or '*' (dupli-
cates okay). See vignette('hooks').

reformat Set reformat = function (job) to define what <Job>$result should return.
The default, reformat = NULL passes <Job>$output to <Job>$result unchanged. See
vignette('results').

signal Should calling <Job>$result signal on condition objects? When FALSE, <Job>$result
will return the object without taking additional action. Setting to TRUE or a character
vector of condition classes, e.g. c('interrupt', 'error', 'warning'), will cause the
equivalent of stop(<condition>) to be called when those conditions are produced. See
vignette('results').

cpus How many CPU cores to reserve for this Job. Used to limit the number of Jobs running
simultaneously to respect <Queue>$max_cpus. Does not prevent a Job from using more
CPUs than reserved.

stop_id If an existing Job in the Queue has the same stop_id, that Job will be stopped and
return an ’interrupt’ condition object as its result. stop_id can also be a function (job)
that returns the stop_id to assign to a given Job. A stop_id of NULL disables this feature.
See vignette('stops').

copy_id If an existing Job in the Queue has the same copy_id, the newly submitted Job will
become a "proxy" for that earlier Job, returning whatever result the earlier Job returns.
copy_id can also be a function (job) that returns the copy_id to assign to a given Job.
A copy_id of NULL disables this feature. See vignette('stops').

... Arbitrary named values to add to the returned Job object.

Returns: The new Job object.

Method submit(): Adds a Job to the Queue for running on a background process.

Usage:
Queue$submit(job)

Arguments:

8 Queue

job A Job object, as created by Job$new().

Returns: This Queue, invisibly.

Method wait(): Blocks until the Queue enters the given state.

Usage:
Queue$wait(state = "idle")

Arguments:

state The name of a Queue state. Typically one of:
• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'starting' - Workers are starting.
• 'idle' - All workers are ready/idle.
• 'busy' - At least one worker is busy.
• 'stopped' - Shutdown is complete.
• 'error' - Workers did not start cleanly.

Returns: This Queue, invisibly.

Method on(): Attach a callback function to execute when the Queue enters state.

Usage:
Queue$on(state, func)

Arguments:

state The name of a Queue state. Typically one of:
• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'starting' - Workers are starting.
• 'idle' - All workers are ready/idle.
• 'busy' - At least one worker is busy.
• 'stopped' - Shutdown is complete.
• 'error' - Workers did not start cleanly.

func A function that accepts a Queue object as input. Return value is ignored.

Returns: A function that when called removes this callback from the Queue.

Method stop(): Stop all jobs and workers.

Usage:
Queue$stop(reason = "job queue shut down by user", cls = NULL)

Arguments:

reason Passed to <Job>$stop() for any Jobs currently managed by this Queue.
cls Passed to <Job>$stop() for any Jobs currently managed by this Queue.

Returns: This Queue, invisibly.

Worker 9

Worker A Background Process

Description

Where Job expressions are evaluated.

Active bindings

hooks A named list of currently registered callback hooks.

job The currently running Job.

ps The ps::ps_handle() object for the background process.

reason Why the Worker was stopped.

state The Worker’s state: 'starting', 'idle', 'busy', or 'stopped'.

uid A short string, e.g. 'W11', that uniquely identifies this Worker.

tmp The Worker’s temporary directory.

Methods

Public methods:
• Worker$new()

• Worker$print()

• Worker$start()

• Worker$stop()

• Worker$restart()

• Worker$on()

• Worker$wait()

• Worker$run()

Method new(): Creates a background R process for running Jobs.

Usage:
Worker$new(globals = NULL, packages = NULL, init = NULL, hooks = NULL)

Arguments:
globals A named list of variables that all <Job>$exprs will have access to. Alternatively, an

object that can be coerced to a named list with as.list(), e.g. named vector, data.frame,
or environment.

packages Character vector of package names to load on workers.
init A call or R expression wrapped in curly braces to evaluate on each worker just once,

immediately after start-up. Will have access to variables defined by globals and assets
from packages. Returned value is ignored.

hooks A named list of functions to run when the Worker state changes, of the form hooks =
list(idle = function (worker) {...}). Names of worker hooks are typically starting,
idle, busy, stopped, or '*' (duplicates okay). See vignette('hooks').

10 Worker

Returns: A Worker object.

Method print(): Print method for a Worker.

Usage:
Worker$print(...)

Arguments:
... Arguments are not used currently.

Returns: The Worker, invisibly.

Method start(): Restarts a stopped Worker.

Usage:
Worker$start()

Returns: The Worker, invisibly.

Method stop(): Stops a Worker by terminating the background process and calling <Job>$stop(reason)
on any Jobs currently assigned to this Worker.

Usage:
Worker$stop(reason = "worker stopped by user", cls = NULL)

Arguments:
reason Passed to <Job>$stop() for any Jobs currently managed by this Worker.
cls Passed to <Job>$stop() for any Jobs currently managed by this Worker.

Returns: The Worker, invisibly.

Method restart(): Restarts a Worker by calling <Worker>$stop(reason) and <Worker>$start()
in succession.

Usage:
Worker$restart(reason = "restarting worker")

Arguments:
reason Passed to <Job>$stop() for any Jobs currently managed by this Worker.

Returns: The Worker, invisibly.

Method on(): Attach a callback function to execute when the Worker enters state.

Usage:
Worker$on(state, func)

Arguments:
state The name of a Worker state. Typically one of:

• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'starting' - Waiting for the background process to load.
• 'idle' - Waiting for Jobs to be $run().
• 'busy' - While a Job is running.
• 'stopped' - After <Worker>$stop() is called.

Worker 11

func A function that accepts a Worker object as input. You can call <Worker>$stop() and
other <Worker>$ methods.

Returns: A function that when called removes this callback from the Worker.

Method wait(): Blocks until the Worker enters the given state.

Usage:
Worker$wait(state = "idle")

Arguments:

state The name of a Worker state. Typically one of:
• '*' - Every time the state changes.
• '.next' - Only one time, the next time the state changes.
• 'starting' - Waiting for the background process to load.
• 'idle' - Waiting for Jobs to be $run().
• 'busy' - While a Job is running.
• 'stopped' - After <Worker>$stop() is called.

Returns: This Worker, invisibly.

Method run(): Assigns a Job to this Worker for evaluation on the background process. Worker
must be in the ’idle’ state.

Usage:
Worker$run(job)

Arguments:

job A Job object, as created by Job$new().

Returns: This Worker, invisibly.

Index

Job, 2, 7–9, 11
Jobs, 5

Queue, 3, 5

Worker, 6, 9
Workers, 5

12

	Job
	Queue
	Worker
	Index

