The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

jstable

AppVeyor build status Github action CRAN_Status_Badge CRAN_Download_Badge codecov GitHub issues GitHub stars GitHub license

Regression Tables from ‘GLM’, ‘GEE’, ‘GLMM’, ‘Cox’ and ‘survey’ Results for Publication.

Install

install.packages("jstable")


## From github: latest version
remotes::install_github('jinseob2kim/jstable')
library(jstable)

GLM Table

## Gaussian
glm_gaussian <- glm(mpg~cyl + disp, data = mtcars)
glmshow.display(glm_gaussian, decimal = 2)
## $first.line
## [1] "Linear regression predicting mpg\n"
## 
## $table
##      crude coeff.(95%CI)   crude P value adj. coeff.(95%CI)    adj. P value
## cyl  "-2.88 (-3.51,-2.24)" "< 0.001"     "-1.59 (-2.98,-0.19)" "0.034"     
## disp "-0.04 (-0.05,-0.03)" "< 0.001"     "-0.02 (-0.04,0)"     "0.054"     
## 
## $last.lines
## [1] "No. of observations = 32\nR-squared = 0.7596\nAIC value = 167.1456\n\n"
## 
## attr(,"class")
## [1] "display" "list"
## Binomial
glm_binomial <- glm(vs~cyl + disp, data = mtcars, family = binomial)
glmshow.display(glm_binomial, decimal = 2)
## $first.line
## [1] "Logistic regression predicting vs\n"
## 
## $table
##      crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
## cyl  "0.2 (0.08,0.56)"  "0.002"       "0.15 (0.02,1.02)" "0.053"     
## disp "0.98 (0.97,0.99)" "0.002"       "1 (0.98,1.03)"    "0.715"     
## 
## $last.lines
## [1] "No. of observations = 32\nAIC value = 23.8304\n\n"
## 
## attr(,"class")
## [1] "display" "list"

GEE Table: from geeglm object from geepack package

library(geepack)  ## for dietox data
data(dietox)
dietox$Cu <- as.factor(dietox$Cu)
dietox$ddn <- as.numeric(rnorm(nrow(dietox)) > 0)
gee01 <- geeglm (Weight ~ Time + Cu , id = Pig, data = dietox, family = gaussian, corstr = "ex")
geeglm.display(gee01)
## $caption
## [1] "GEE(gaussian) predicting Weight by Time, Cu - Group Pig"
## 
## $table
##                crude coeff(95%CI)   crude P value adj. coeff(95%CI)  
## Time           "6.94 (6.79,7.1)"    "< 0.001"     "6.94 (6.79,7.1)"  
## Cu: ref.=Cu000 NA                   NA            NA                 
##       035      "-0.59 (-3.73,2.54)" "0.711"       "-0.84 (-3.9,2.23)"
##       175      "1.9 (-1.87,5.66)"   "0.324"       "1.77 (-1.9,5.45)" 
##                adj. P value
## Time           "< 0.001"   
## Cu: ref.=Cu000 NA          
##       035      "0.593"     
##       175      "0.345"     
## 
## $metric
##                                  crude coeff(95%CI) crude P value
##                                  NA                 NA           
## Estimated correlation parameters "0.775"            NA           
## No. of clusters                  "72"               NA           
## No. of observations              "861"              NA           
##                                  adj. coeff(95%CI) adj. P value
##                                  NA                NA          
## Estimated correlation parameters NA                NA          
## No. of clusters                  NA                NA          
## No. of observations              NA                NA
gee02 <- geeglm (ddn ~ Time + Cu , id = Pig, data = dietox, family = binomial, corstr = "ex")
geeglm.display(gee02)
## $caption
## [1] "GEE(binomial) predicting ddn by Time, Cu - Group Pig"
## 
## $table
##                crude OR(95%CI)    crude P value adj. OR(95%CI)     adj. P value
## Time           "0.99 (0.96,1.03)" "0.729"       "0.99 (0.96,1.03)" "0.727"     
## Cu: ref.=Cu000 NA                 NA            NA                 NA          
##       035      "1.2 (0.81,1.78)"  "0.364"       "1.2 (0.81,1.78)"  "0.364"     
##       175      "1.03 (0.71,1.48)" "0.889"       "1.03 (0.71,1.48)" "0.889"     
## 
## $metric
##                                  crude OR(95%CI) crude P value adj. OR(95%CI)
##                                  NA              NA            NA            
## Estimated correlation parameters "0.031"         NA            NA            
## No. of clusters                  "72"            NA            NA            
## No. of observations              "861"           NA            NA            
##                                  adj. P value
##                                  NA          
## Estimated correlation parameters NA          
## No. of clusters                  NA          
## No. of observations              NA

Mixed model Table: lmerMod or glmerMod object from lme4 package

library(lme4)
l1 <- lmer(Weight ~ Time + Cu + (1|Pig), data = dietox) 
lmer.display(l1, ci.ranef = T)
## $table
##                      crude coeff(95%CI) crude P value adj. coeff(95%CI)
## Time                   6.94 (6.88,7.01)     0.0000000  6.94 (6.88,7.01)
## Cu: ref.=Cu000                     <NA>            NA              <NA>
##       035            -0.58 (-4.67,3.51)     0.7811327 -0.84 (-4.47,2.8)
##       175              1.9 (-2.23,6.04)     0.3670740  1.77 (-1.9,5.45)
## Random effects                     <NA>            NA              <NA>
## Pig                 40.34 (28.08,54.95)            NA              <NA>
## Residual             11.37 (10.3,12.55)            NA              <NA>
## Metrics                            <NA>            NA              <NA>
## No. of groups (Pig)                  72            NA              <NA>
## No. of observations                 861            NA              <NA>
## Log-likelihood                  -2400.8            NA              <NA>
## AIC value                        4801.6            NA              <NA>
##                     adj. P value
## Time                   0.0000000
## Cu: ref.=Cu000                NA
##       035              0.6527264
##       175              0.3442309
## Random effects                NA
## Pig                           NA
## Residual                      NA
## Metrics                       NA
## No. of groups (Pig)           NA
## No. of observations           NA
## Log-likelihood                NA
## AIC value                     NA
## 
## $caption
## [1] "Linear mixed model fit by REML : Weight ~ Time + Cu + (1 | Pig)"
l2 <- glmer(ddn ~ Weight + Time + (1|Pig), data= dietox, family= "binomial")
lmer.display(l2)
## $table
##                      crude OR(95%CI) crude P value   adj. OR(95%CI)
## Weight                    1 (0.99,1)     0.5477787 0.99 (0.97,1.01)
## Time                0.99 (0.96,1.03)     0.7532531 1.09 (0.93,1.27)
## Random effects                  <NA>            NA             <NA>
## Pig                             0.11            NA             <NA>
## Metrics                         <NA>            NA             <NA>
## No. of groups (Pig)               72            NA             <NA>
## No. of observations              861            NA             <NA>
## Log-likelihood               -594.08            NA             <NA>
## AIC value                    1196.16            NA             <NA>
##                     adj. P value
## Weight                 0.2256157
## Time                   0.2754273
## Random effects                NA
## Pig                           NA
## Metrics                       NA
## No. of groups (Pig)           NA
## No. of observations           NA
## Log-likelihood                NA
## AIC value                     NA
## 
## $caption
## [1] "Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) : ddn ~ Weight + Time + (1 | Pig)"

Cox model with frailty or cluster options

library(survival)
fit1 <- coxph(Surv(time, status) ~ ph.ecog + age, cluster = inst, lung, model = T)  ## model = T: to extract original data
fit2 <- coxph(Surv(time, status) ~ ph.ecog + age + frailty(inst), lung, model = T)
cox2.display(fit1)
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)  adj. P value
## ph.ecog "1.61 (1.25,2.08)" "< 0.001"     "1.56 (1.22,2)" "< 0.001"   
## age     "1.02 (1.01,1.03)" "0.007"       "1.01 (1,1.02)" "0.085"     
## 
## $ranef
##         [,1] [,2] [,3] [,4]
## cluster   NA   NA   NA   NA
## inst      NA   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Marginal Cox model on time ('time') to event ('status') - Group inst"
cox2.display(fit2)
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
## ph.ecog "1.64 (1.31,2.05)" "< 0.001"     "1.58 (1.26,1.99)" "< 0.001"   
## age     "1.02 (1,1.04)"    "0.041"       "1.01 (0.99,1.03)" "0.225"     
## 
## $ranef
##         [,1] [,2] [,3] [,4]
## frailty   NA   NA   NA   NA
## inst      NA   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Frailty Cox model on time ('time') to event ('status') - Group inst"

Cox mixed effect model Table: coxme object from coxme package

library(coxme)
fit <- coxme(Surv(time, status) ~ ph.ecog + age + (1|inst), lung)
coxme.display(fit) 
## $table
##         crude HR(95%CI)    crude P value adj. HR(95%CI)     adj. P value
## ph.ecog "1.66 (1.32,2.09)" "< 0.001"     "1.61 (1.27,2.03)" "< 0.001"   
## age     "1.02 (1,1.04)"    "0.043"       "1.01 (0.99,1.03)" "0.227"     
## 
## $ranef
##                 [,1] [,2] [,3] [,4]
## Random effect     NA   NA   NA   NA
## inst(Intercept) 0.02   NA   NA   NA
## 
## $metric
##                     [,1] [,2] [,3] [,4]
## <NA>                  NA   NA   NA   NA
## No. of groups(inst)   18   NA   NA   NA
## No. of observations  226   NA   NA   NA
## No. of events        163   NA   NA   NA
## 
## $caption
## [1] "Mixed effects Cox model on time ('time') to event ('status') - Group inst"

GLM for survey data : svyglm object from survey package

library(survey)
data(api)
apistrat$tt <- c(rep(1, 20), rep(0, nrow(apistrat) -20))
apistrat$tt2 <- factor(c(rep(0, 40), rep(1, nrow(apistrat) -40)))

dstrat <-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
ds <- svyglm(api00~ell+meals+mobility + tt2, design=dstrat)
ds2 <- svyglm(tt~ell+meals+mobility + tt2, design=dstrat, family = quasibinomial())
svyregress.display(ds)
## $first.line
## [1] "Linear regression predicting api00- weighted data\n"
## 
## $table
##             crude coeff.(95%CI)    crude P value adj. coeff.(95%CI)   
## ell         "-3.73 (-4.35,-3.11)"  "< 0.001"     "-0.48 (-1.25,0.29)" 
## meals       "-3.38 (-3.71,-3.05)"  "< 0.001"     "-3.14 (-3.69,-2.59)"
## mobility    "-1.43 (-3.3,0.44)"    "0.137"       "0.22 (-0.55,0.99)"  
## tt2: 1 vs 0 "10.98 (-34.16,56.12)" "0.634"       "6.13 (-17.89,30.15)"
##             adj. P value
## ell         "0.222"     
## meals       "< 0.001"   
## mobility    "0.573"     
## tt2: 1 vs 0 "0.618"     
## 
## $last.lines
## [1] "No. of observations = 200\nAIC value = 2309.8282\n\n"
## 
## attr(,"class")
## [1] "display" "list"
svyregress.display(ds2)
## $first.line
## [1] "Logistic regression predicting tt- weighted data\n"
## 
## $table
##             crude OR.(95%CI)   crude P value adj. OR.(95%CI)    adj. P value
## ell         "1.02 (1,1.05)"    "0.047"       "1.11 (1.03,1.21)" "0.009"     
## meals       "1.01 (0.99,1.03)" "0.255"       "0.95 (0.91,1)"    "0.068"     
## mobility    "1.01 (0.98,1.03)" "0.506"       "1.1 (0.98,1.23)"  "0.114"     
## tt2: 1 vs 0 "0 (0,0)"          "< 0.001"     "0 (0,0)"          "< 0.001"   
## 
## $last.lines
## [1] "No. of observations = 200\n\n"
## 
## attr(,"class")
## [1] "display" "list"

Cox model for survey data :svycoxph object from survey package

data(pbc, package="survival")
pbc$sex <- factor(pbc$sex)
pbc$stage <- factor(pbc$stage)
pbc$randomized <- with(pbc, !is.na(trt) & trt>0)
biasmodel <- glm(randomized~age*edema,data=pbc,family=binomial)
pbc$randprob <- fitted(biasmodel)

if (is.null(pbc$albumin)) pbc$albumin <- pbc$alb ##pre2.9.0

dpbc <- svydesign(id=~1, prob=~randprob, strata=~edema, data=subset(pbc,randomized))

model <- svycoxph(Surv(time,status>0)~ sex + protime + albumin + stage,design=dpbc)
svycox.display(model)
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))
## Stratified Independent Sampling design (with replacement)
## svydesign(id = ~1, prob = ~randprob, strata = ~edema, data = subset(pbc, 
##     randomized))

## $table
##               crude HR(95%CI)      crude P value adj. HR(95%CI)       
## sex: f vs m   "0.62 (0.4,0.97)"    "0.038"       "0.55 (0.33,0.9)"    
## protime       "1.37 (1.09,1.72)"   "0.006"       "1.52 (1.2,1.91)"    
## albumin       "0.2 (0.14,0.29)"    "< 0.001"     "0.31 (0.2,0.47)"    
## stage: ref.=1 NA                   NA            NA                   
##    2          "5.67 (0.77,41.78)"  "0.089"       "10.94 (1.01,118.55)"
##    3          "9.78 (1.37,69.94)"  "0.023"       "17.03 (1.69,171.6)" 
##    4          "22.89 (3.2,163.48)" "0.002"       "22.56 (2.25,226.42)"
##               adj. P value
## sex: f vs m   "0.017"     
## protime       "< 0.001"   
## albumin       "< 0.001"   
## stage: ref.=1 NA          
##    2          "0.049"     
##    3          "0.016"     
##    4          "0.008"     
## 
## $metric
##                        [,1] [,2] [,3] [,4]
## <NA>                     NA   NA   NA   NA
## No. of observations  312.00   NA   NA   NA
## No. of events        144.00   NA   NA   NA
## AIC                 1480.29   NA   NA   NA
## 
## $caption
## [1] "Survey cox model on time ('time') to event ('status > 0')"

Sub-group analysis for Cox/svycox model

library(dplyr)
lung %>% 
  mutate(status = as.integer(status == 1),
         sex = factor(sex),
         kk = factor(as.integer(pat.karno >= 70)),
         kk1 = factor(as.integer(pat.karno >= 60))) -> lung

TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = lung, line = TRUE)
##   Variable Count Percent Point Estimate Lower Upper    1    2 P value
## 1  Overall   228     100           1.91  1.14   3.2  100  100   0.014
## 2     <NA>  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 3       kk  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 4        0    38    16.9           2.88  0.31 26.49   10  100    0.35
## 5        1   187    83.1           1.84  1.08  3.14  100  100   0.026
## 6     <NA>  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 7      kk1  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 8        0     8     3.6           <NA>  <NA>  <NA>    0  100    <NA>
## 9        1   217    96.4           1.88  1.12  3.17  100  100   0.018
##   P for interaction
## 1              <NA>
## 2              <NA>
## 3             0.525
## 4              <NA>
## 5              <NA>
## 6              <NA>
## 7             0.997
## 8              <NA>
## 9              <NA>
## Survey data
library(survey)
data.design <- svydesign(id = ~1, data = lung)
TableSubgroupMultiCox(Surv(time, status) ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, line = FALSE)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)
## Independent Sampling design (with replacement)
## svydesign(id = ~1, data = lung)
## Independent Sampling design (with replacement)
## subset(data, get(var_subgroup) == .)

##   Variable Count Percent Point Estimate Lower Upper    1    2 P value
## 1  Overall   228     100           1.91  1.14  3.19  100  100   0.013
## 2       kk  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 3        0    38    16.9           2.88  0.31  27.1   10  100   0.355
## 4        1   187    83.1           1.84  1.08  3.11  100  100   0.024
## 5      kk1  <NA>    <NA>           <NA>  <NA>  <NA> <NA> <NA>    <NA>
## 6        0  <NA>    <NA>           <NA>  <NA>  <NA>    0  100    <NA>
## 7        1   217    <NA>           1.88  1.12  3.15  100  100   0.017
##   P for interaction
## 1              <NA>
## 2             0.523
## 3              <NA>
## 4              <NA>
## 5            <0.001
## 6              <NA>
## 7              <NA>

Sub-group analysis for GLM

TableSubgroupMultiGLM(status ~ sex, var_subgroups = c("kk", "kk1"), data = lung, family = "binomial")
##   Variable Count Percent           OR Lower  Upper P value P for interaction
## 1  Overall   228     100         3.01  1.66   5.52  <0.001              <NA>
## 2       kk  <NA>    <NA>         <NA>  <NA>   <NA>    <NA>             0.476
## 3        0    38    16.9            7  0.91 145.62   0.098              <NA>
## 4        1   187    83.1         2.94  1.56   5.62   0.001              <NA>
## 5      kk1  <NA>    <NA>         <NA>  <NA>   <NA>    <NA>             0.984
## 6        0     8     3.6 314366015.19     0   <NA>   0.997              <NA>
## 7        1   217    96.4         2.85  1.56   5.29   0.001              <NA>
## Survey data
TableSubgroupMultiGLM(pat.karno ~ sex, var_subgroups = c("kk", "kk1"), data = data.design, family = "gaussian", line = TRUE)
##   Variable Count Percent Point.Estimate  Lower Upper P value P for interaction
## 1  Overall   225     100           1.37  -2.58  5.33   0.496              <NA>
## 2     <NA>  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>              <NA>
## 3       kk  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>             0.231
## 4        0    38    16.9          -1.19   -6.5  4.11   0.662              <NA>
## 5        1   187    83.1           2.53  -0.42  5.47   0.094              <NA>
## 6     <NA>  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>              <NA>
## 7      kk1  <NA>    <NA>           <NA>   <NA>  <NA>    <NA>             0.738
## 8        0     8     3.6              0 -11.52 11.52       1              <NA>
## 9        1   217    96.4           2.06  -1.43  5.55   0.249              <NA>

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.