The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.

Studying the behaviour of Kendall random walks

Mateusz Staniak

We will approximate the distribution of moments when the random walk changes state through simulations.

First, we simulate many paths of Kendall random walk with normal step distribution.

library(kendallRandomWalks)
library(dplyr)
library(ggplot2)
set.seed(17)
walks <- simulate_kendall_rw(1000, 1000, rnorm, 0.5, T)
walks2 <- simulate_kendall_rw(1000, 1000, rcauchy, 0.5, T)

Example trajectory

plot(walks, max_id = 1)

plot(walks2, max_id = 1)

Number of unique states

ggplot(summarise_kendall_rw(walks, n_distinct), aes(x = aggregated), color = "black") +
  theme_bw() +
  geom_density() +
  geom_density(data = summarise_kendall_rw(walks2, n_distinct), color = "blue") +
  ylab("Estimated density") +
  xlab("Number of unique values") +
  scale_color_discrete(guide = "legend")

Jumps

diffs <- mutate_kendall_rw(walks, function(x) x - lag(x), F)
plot(diffs, max_id = 1)

diffs2 <- mutate_kendall_rw(walks2, function(x) x - lag(x), F)
plot(diffs2, max_id = 1)

Time with no change of state

diffs3 <- mutate_kendall_rw(diffs, function(x) as.numeric(x != 0), F)
lengths <- diffs3$simulation %>%
  group_by(sim_id) %>%
  mutate(id = 1:n()) %>%
  filter(sim != 0) %>%
  mutate(previous = ifelse(is.na(lag(id)), 0, lag(id))) %>%
  mutate(length = id - previous)

diffs4 <- mutate_kendall_rw(diffs2, function(x) as.numeric(x != 0), F)
lengths2 <- diffs4$simulation %>%
  group_by(sim_id) %>%
  mutate(id = 1:n()) %>%
  filter(sim != 0) %>%
  mutate(previous = ifelse(is.na(lag(id)), 0, lag(id))) %>%
  mutate(length = id - previous)


ggplot(subset(lengths, sim_id < 5), 
       aes(x = length, fill = as.factor(sim_id), group = as.factor(sim_id))) +
  geom_density() +
  theme_bw() +
  ggtitle("Distribution of time with no state-change (by simulation)")

ggplot(lengths, aes(x = length)) +
  geom_density() +
  theme_bw() +
  xlab("Jump size") +
  ggtitle("Distribution of time with no state-change (aggregated)")

ggplot(lengths2, aes(x = length)) +
  geom_density() +
  theme_bw() +
  xlab("Jump size") +
  ggtitle("Distribution of time with no state-change (aggregated)")




ggplot(subset(lengths, sim_id < 10), aes(x = id, y = length, color = as.factor(sim_id))) +
  geom_point() +
  theme_bw() +
  geom_line() +
  guides(color = "none") +
  xlab("Time") +
  ylab("Jump size") +
  ggtitle("Time with no state-change in time")

These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.