The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The CRAN Task View on Extreme Value Analysis provides information about R packages that perform various extreme value analyses. The lax package supplements the univariate extreme value modelling, including regression modelling, provided by 9 of these packages, namely eva, evd, evir, extRemes, fExtremes, ismev, mev, POT and texmex. lax works in an object-oriented way, operating on R objects returned from functions in other packages that summarise the fit of an extreme value model. It uses the chandwich package to provide robust sandwich estimation of parameter covariance matrix and loglikelihood adjustment for models fitted by maximum likelihood estimation. This is performed by an alogLik
S3 method, illustrated by the following example.
This example is based on the analysis presented in Section 5.2 of Chandler and Bate (2007). The data, which are available in the data frame ow
, are a bivariate time series of annual maximum temperatures, recorded in degrees Fahrenheit, at Oxford and Worthing in England, for the period 1901 to 1980. If interest is only in the marginal distributions of high temperatures in Oxford and Worthing, then we might fit a GEV regression model in which some or all of the parameters may vary between Oxford and Worthing. However, we should adjust for the cluster dependence between temperatures recorded during the same year.
The following code fits such a model using the fevd
function in the extRemes package and the uses alogLik
to perform adjusted inferences.
library(lax)
library(extRemes, quietly = TRUE)
#>
#> Attaching package: 'extRemes'
#> The following objects are masked from 'package:stats':
#>
#> qqnorm, qqplot
# Fit a GEV model with separate location, scale and shape for Oxford and Worthing
# Note: phi = log(scale)
evm_fit <- fevd(temp, ow, location.fun = ~ loc, scale.fun = ~ loc,
shape.fun = ~ loc)
# Adjust the loglikelihood and standard errors
adj_evm_fit <- alogLik(evm_fit, cluster = ow$year, cadjust = FALSE)
# MLEs, SEs and adjusted SEs
summary(adj_evm_fit)
#> MLE SE adj. SE
#> mu0 81.17000 0.32820 0.40360
#> mu1 2.66800 0.32820 0.21280
#> sigma0 3.72900 0.22930 0.24260
#> sigma1 0.53090 0.22930 0.19110
#> xi0 -0.19890 0.04938 0.03944
#> xi1 -0.08828 0.04938 0.03625
An object returned from aloglik
is a function to evaluate the adjusted loglikelihood, with anova
, coef
, confint
, logLik
, nobs
, plot
, print
, summary
and vcov
methods.
To get the current released version from CRAN:
See vignette("lax-vignette", package = "lax")
for an overview of the package.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.