Package 'learner'

January 8, 2025

Type Package

```
Title Latent Space-Based Transfer Learning
Version 0.1.0
Maintainer Sean McGrath < sean.mcgrath514@gmail.com>
Description Implements transfer learning methods for low-rank matrix
     estimation. These methods leverage similarity in the latent row and column
     spaces between the source and target populations to improve estimation in
     the target population. The methods include the LatEnt spAce-based tRaNsfer
     lEaRning (LEARNER) method and the direct projection LEARNER (D-LEARNER)
     method described by McGrath et al. (2024) <doi:10.48550/arXiv.2412.20605>.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
URL https://github.com/stmcg/learner
BugReports https://github.com/stmcg/learner/issues
Imports doParallel, foreach, ScreeNOT
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 2.10)
NeedsCompilation no
Author Sean McGrath [aut, cre] (<a href="https://orcid.org/0000-0002-7281-3516">https://orcid.org/0000-0002-7281-3516</a>),
     Cenhao Zhu [aut],
     Rui Duan [aut]
Repository CRAN
Date/Publication 2025-01-08 15:10:08 UTC
```

2 cv.learner

Contents

cv.1	earner	C	Cross-	val	idat	ion	for	r L	ΕA	R	VΕ	ZR															
Index																											9
	learner					•		•		•			•	•	•	 •	•	•	•	•		•	•	•	•	•	ϵ
	dlearner																										
	dat_modsim .																										
	dat_highsim .																										
	cv.learner																										

Description

This function performs k-fold cross-validation to select the nuisance parameters (λ_1,λ_2) for learner.

Usage

```
cv.learner(
   Y_source,
   Y_target,
   r,
   lambda_1_all,
   lambda_2_all,
   step_size,
   n_folds = 4,
   n_cores = 1,
   control = list()
)
```

Arguments

Y_source	matrix containing the source population data, as in learner
Y_target	matrix containing the target population data, as in learner
r	(optional) integer specifying the rank of the knowledge graphs, as in learner
lambda_1_all	vector of numerics specifying the candidate values of λ_1 (see Details)
lambda_2_all	vector of numerics specifying the candidate values of λ_2 (see Details)
step_size	numeric scalar specifying the step size for the Newton steps in the numerical optimization algorithm, as in learner
n_folds	an integer specify the number of cross-validation folds. The default is 4.
n_cores	an integer specifying the number of CPU cores in parallelization. Parallelization is performed across the different candidate (λ_1, λ_2) pairs. The default is 1, i.e., no parallelization.
control	a list of parameters for controlling the stopping criteria for the numerical optimization algorithm, as in learner.

dat_highsim 3

Details

Given sets of candidate values of λ_1 and λ_2 , this function performs k-fold cross-validation to select the pair (λ_1, λ_2) with the smallest held out error. This function randomly partitions the entries of Y_target into k (approximately) equally sized subsamples. The training data sets are obtained by removing one of the k subsamples and the corresponding test data sets are based on the held out subsamples. The learner function is applied to each training data set. The held out error is computed by the mean squared error comparing the entries in the test data sets with those imputed from the LEARNER estimates. See McGrath et al. (2024) for further details.

Value

A list with the following elements:

```
lambda_1_min value of \lambda_1 with the smallest MSE value of \lambda_2 with the smallest MSE value of \lambda_2 with the smallest MSE matrix containing MSE value for each (\lambda_1, \lambda_2) pair. The rows correspond to the \lambda_1 values, and the columns correspond to the \lambda_2 values. rank value used.
```

References

McGrath, S., Zhu, C,. Guo, M. and Duan, R. (2024). *LEARNER: A transfer learning method for low-rank matrix estimation*. arXiv preprint arXiv:2412.20605.

Examples

dat_highsim

Simulated data set: High similarity in the latent spaces

Description

This data set contains simulated data in the source and target populations where there is a high degree of similarity in the underlying latent spaces between these populations.

Usage

```
dat_highsim
```

4 dat_modsim

Format

A list containing the observed and true matrices in the source and target populations. The list contains the following components:

Y_source A matrix of size 100×50 representing the observed source population matrix.

Y_target A matrix of size 100×50 representing the observed target population matrix.

Theta_source A matrix of size 100×50 (rank 3) representing the true source population matrix.

Theta_target A matrix of size 100×50 (rank 3) representing the true target population matrix.

Details

In this data set, there is a high degree of similarity in the latent spaces between the source and target populations. Specifically, the true source population matrix was obtained by reversing the order of the singular values of the true target population matrix. The observed target population matrix was obtained by adding independent and identically distributed noise to the entries of the true source population matrix. The noise was generated from a normal distribution with mean 0 and standard deviation of 1. The observed source population matrix was generated analogously, where the noise had a standard deviation of 0.5.

See Also

dat_modsim

dat_modsim

Simulated data set: Moderate similarity in the latent spaces

Description

This data set contains simulated data in the source and target populations where there is a moderate degree of similarity in the underlying latent spaces between these populations.

Usage

dat_modsim

Format

A list containing the observed and true matrices in the source and target populations. The list contains the following components:

Y_source A matrix of size 100×50 representing the observed source population matrix.

Y_target A matrix of size 100×50 representing the observed target population matrix.

Theta_source A matrix of size 100×50 (rank 3) representing the true source population matrix.

Theta_target A matrix of size 100×50 (rank 3) representing the true target population matrix.

dlearner 5

Details

In this data set, there is a moderate degree of similarity in the latent spaces between the source and target populations. Specifically, the true source population matrix was obtained by (i) reversing the order of the singular values of the true target population matrix and (ii) adding perturbations to the left and right singular vectors of the true target population matrix. The observed target population matrix was obtained by adding independent and identically distributed noise to the entries of the true source population matrix. The noise was generated from a normal distribution with mean 0 and standard deviation of 1. The observed source population matrix was generated analogously, where the noise had a standard deviation of 0.5.

See Also

dat_modsim

dlearner

Latent space-based transfer learning

Description

This function applies the Direct project LatEnt spAce-based tRaNsfer lEaRning (D-LEARNER) method (McGrath et al. 2024) to leverage data from a source population to improve estimation of a low rank matrix in an underrepresented target population.

Usage

```
dlearner(Y_source, Y_target, r)
```

Arguments

Y_source matrix containing the source population data Y_target matrix containing the target population data

(optional) integer specifying the rank of the knowledge graphs. By default,

ScreeNOT (Donoho et al. 2023) is applied to the source population knowledge

graph to select the rank.

Details

Data and notation:

The data consists of a matrix in the target population $Y_0 \in \mathbb{R}^{p \times q}$ and the source population $Y_1 \in \mathbb{R}^{p \times q}$. Let $\hat{U}_k \hat{\Lambda}_k \hat{V}_k^{\top}$ denote the truncated singular value decomposition (SVD) of Y_k , k = 0, 1.

For k = 0, 1, one can view Y_k as a noisy version of Θ_k , referred to as the knowledge graph. The target of inference is the target population knowledge graph, Θ_0 .

Estimation:

This method estimates Θ_0 by $\hat{U}_1^{\top}\hat{U}_1Y_0\hat{V}_1^{\top}\hat{V}_1$.

6 learner

Value

A list with the following components:

dlearner_estimate

matrix containing the D-LEARNER estimate of the target population knowledge

graph.

r rank value used.

References

Donoho, D., Gavish, M. and Romanov, E. (2023). *ScreeNOT: Exact MSE-optimal singular value thresholding in correlated noise*. The Annals of Statistics, 51(1), pp.122-148.

Examples

learner

Latent space-based transfer learning

Description

This function applies the LatEnt spAce-based tRaNsfer lEaRning (LEARNER) method (McGrath et al. 2024) to leverage data from a source population to improve estimation of a low rank matrix in an underrepresented target population.

Usage

```
learner(Y_source, Y_target, r, lambda_1, lambda_2, step_size, control = list())
```

Arguments

Y_source	matrix containing the source population data
Y_target	matrix containing the target population data
r	(optional) integer specifying the rank of the knowledge graphs. By default, ScreeNOT (Donoho et al. 2023) is applied to the source population knowledge graph to select the rank.
lambda_1	numeric scalar specifying the value of λ_1 (see Details)
lambda_2	numeric scalar specifying the value of λ_2 (see Details)
step_size	numeric scalar specifying the step size for the Newton steps in the numerical optimization algorithm

learner 7

control a list of parameters for controlling the stopping criteria for the numerical opti-

mization algorithm. The list may include the following components:

max_iter integer specifying the maximum number of iterations

threshold numeric scalar specifying a convergence threshold. The algorithm converges when $|\epsilon_t - \epsilon_{t-1}| <$ threshold, who max_value numeric scalar used to specify the maximum value of the objective function allowed before terminating the algorithm

Details

Data and notation:

The data consists of a matrix in the target population $Y_0 \in \mathbb{R}^{p \times q}$ and the source population $Y_1 \in \mathbb{R}^{p \times q}$. Let $\hat{U}_k \hat{\Lambda}_k \hat{V}_k^{\top}$ denote the truncated singular value decomposition (SVD) of Y_k , k = 0, 1.

For k = 0, 1, one can view Y_k as a noisy version of Θ_k , referred to as the knowledge graph. The target of inference is the target population knowledge graph, Θ_0 .

Estimation:

This method estimates Θ_0 by $\tilde{U}\tilde{V}^{\top}$, where (\tilde{U},\tilde{V}) is the solution to the following optimization problem

$$\arg\min_{U \in \mathbb{R}^{p \times r}, V \in \mathbb{R}^{q \times r}} \left\{ \|UV^{\top} - Y_0\|_F^2 + \lambda_1 \|\mathcal{P}_{\perp}(\hat{U}_1)U\|_F^2 + \lambda_1 \|\mathcal{P}_{\perp}(\hat{V}_1)V\|_F^2 + \lambda_2 \|U^{\top}U - V^{\top}V\|_F^2 \right\}$$
 where $\mathcal{P}_{\perp}(\hat{U}_1) = I - \hat{U}_1^{\top}\hat{U}_1$ and $\mathcal{P}_{\perp}(\hat{V}_1) = I - \hat{V}_1^{\top}\hat{V}_1$.

This function uses an alternating minimization strategy to solve the optimization problem. That is, this approach updates U by minimizing the objective function (via a gradient descent step) treating V as fixed. Then, V is updated treating U as fixed. These updates of U and V are repeated until convergence.

Value

A list with the following elements:

learner_estimate

matrix containing the LEARNER estimate of the target population knowledge graph

objective_values

numeric vector containing the values of the objective function at each iteration convergence_criterion

integer specifying the criterion that was satisfied for terminating the numerical optimization algorithm. A value of 1 indicates the convergence threshold was satisfied; A value of 2 indicates that the maximum number of iterations was satisfied; A value of 3 indicates that the maximum value of the objective function was satisfied.

r rank value used.

References

McGrath, S., Zhu, C., Guo, M. and Duan, R. (2024). *LEARNER: A transfer learning method for low-rank matrix estimation*. arXiv preprint arXiv:2412.20605.

Donoho, D., Gavish, M. and Romanov, E. (2023). *ScreeNOT: Exact MSE-optimal singular value thresholding in correlated noise*. The Annals of Statistics, 51(1), pp.122-148.

8 learner

Examples

Index