The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
ledger
is an R package to import data from plain text accounting software like Ledger, HLedger, and Beancount into an R data frame for convenient analysis, plotting, and export.
Right now it supports reading in the register from ledger
, hledger
, and beancount
files.
To install the last version released to CRAN use the following command in R:
install.packages("ledger")
To install the development version of the ledger
package (and its R package dependencies) use the install_github
function from the remotes
package in R:
install.packages("remotes")
remotes::install_github("trevorld/r-ledger")
This package also has some system dependencies that need to be installed depending on which plaintext accounting files you wish to read to be able to read in:
ledger
ledger (>= 3.1)
hledger
hledger (>= 1.4)
beancount
beancount (>= 2.0)
To install hledger run the following in your shell:
stack update && stack install --resolver=lts-14.3 hledger-lib-1.15.2 hledger-1.15.2 hledger-web-1.15 hledger-ui-1.15 --verbosity=error
To install beancount run the following in your shell:
pip3 install beancount
Several pre-compiled Ledger binaries are available (often found in several open source repos).
To run the unit tests you’ll also need the suggested R package testthat
.
The main function of this package is register
which reads in the register of a plaintext accounting file. This package also registers S3 methods so one can use rio::import
to read in a register, a net_worth
convenience function, and a prune_coa
convenience function.
register()
Here are some examples of very basic files stored within the package:
library("ledger")
ledger_file <- system.file("extdata", "example.ledger", package = "ledger")
register(ledger_file)
## # A tibble: 42 × 8
## date mark payee description account amount commodity comment
## <date> <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 2015-12-31 * <NA> Opening Balanc… Assets… 5000 USD ""
## 2 2015-12-31 * <NA> Opening Balanc… Equity… -5000 USD ""
## 3 2016-01-01 * Landlord Rent Assets… -1500 USD ""
## 4 2016-01-01 * Landlord Rent Expens… 1500 USD ""
## 5 2016-01-01 * Brokerage Buy Stock Assets… -1000 USD ""
## 6 2016-01-01 * Brokerage Buy Stock Equity… 1000 USD ""
## 7 2016-01-01 * Brokerage Buy Stock Assets… 4 SP ""
## 8 2016-01-01 * Brokerage Buy Stock Equity… -1000 USD ""
## 9 2016-01-01 * Supermarket Grocery store Expens… 501. USD "Link:…
## 10 2016-01-01 * Supermarket Grocery store Liabil… -501. USD "Link:…
## # ℹ 32 more rows
hledger_file <- system.file("extdata", "example.hledger", package = "ledger")
register(hledger_file)
## # A tibble: 42 × 12
## date mark payee description account amount commodity historical_cost
## <date> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl>
## 1 2015-12-31 * <NA> Opening Ba… Assets… 5000 USD 5000
## 2 2015-12-31 * <NA> Opening Ba… Equity… -5000 USD -5000
## 3 2016-01-01 * Landlo… Rent Assets… -1500 USD -1500
## 4 2016-01-01 * Landlo… Rent Expens… 1500 USD 1500
## 5 2016-01-01 * Broker… Buy Stock Assets… -1000 USD -1000
## 6 2016-01-01 * Broker… Buy Stock Equity… 1000 USD 1000
## 7 2016-01-01 * Broker… Buy Stock Assets… 4 SP 1000
## 8 2016-01-01 * Broker… Buy Stock Equity… -1000 USD -1000
## 9 2016-01-01 * Superm… Grocery st… Expens… 501. USD 501.
## 10 2016-01-01 * Superm… Grocery st… Liabil… -501. USD -501.
## # ℹ 32 more rows
## # ℹ 4 more variables: hc_commodity <chr>, market_value <dbl>,
## # mv_commodity <chr>, id <chr>
beancount_file <- system.file("extdata", "example.beancount", package = "ledger")
register(beancount_file)
## # A tibble: 42 × 13
## date mark payee description account amount commodity historical_cost
## <date> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl>
## 1 2015-12-31 * "" Opening Ba… Assets… 5000 USD 5000
## 2 2015-12-31 * "" Opening Ba… Equity… -5000 USD -5000
## 3 2016-01-01 * "Landl… Rent Assets… -1500 USD -1500
## 4 2016-01-01 * "Landl… Rent Expens… 1500 USD 1500
## 5 2016-01-01 * "Broke… Buy Stock Assets… -1000 USD -1000
## 6 2016-01-01 * "Broke… Buy Stock Equity… 1000 USD 1000
## 7 2016-01-01 * "Broke… Buy Stock Assets… 4 SP 1000
## 8 2016-01-01 * "Broke… Buy Stock Equity… -1000 USD -1000
## 9 2016-01-01 * "Super… Grocery st… Expens… 501. USD 501.
## 10 2016-01-01 * "Super… Grocery st… Liabil… -501. USD -501.
## # ℹ 32 more rows
## # ℹ 5 more variables: hc_commodity <chr>, market_value <dbl>,
## # mv_commodity <chr>, tags <chr>, id <chr>
Here is an example reading in a beancount file generated by bean-example
:
bean_example_file <- tempfile(fileext = ".beancount")
system(paste("bean-example -o", bean_example_file), ignore.stderr=TRUE)
df <- register(bean_example_file)
print(df)
## # A tibble: 2,907 × 13
## date mark payee description account amount commodity historical_cost
## <date> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl>
## 1 2022-01-01 * "" Opening Ba… Assets… 3.78e3 USD 3783.
## 2 2022-01-01 * "" Opening Ba… Equity… -3.78e3 USD -3783.
## 3 2022-01-01 * "" Allowed co… Income… -1.85e4 IRAUSD -18500
## 4 2022-01-01 * "" Allowed co… Assets… 1.85e4 IRAUSD 18500
## 5 2022-01-04 * "BANK… Monthly ba… Assets… -4 e0 USD -4
## 6 2022-01-04 * "BANK… Monthly ba… Expens… 4 e0 USD 4
## 7 2022-01-05 * "Rive… Paying the… Assets… -2.4 e3 USD -2400
## 8 2022-01-05 * "Rive… Paying the… Expens… 2.4 e3 USD 2400
## 9 2022-01-05 * "Jewe… Eating out Liabil… -3.74e1 USD -37.4
## 10 2022-01-05 * "Jewe… Eating out Expens… 3.74e1 USD 37.4
## # ℹ 2,897 more rows
## # ℹ 5 more variables: hc_commodity <chr>, market_value <dbl>,
## # mv_commodity <chr>, tags <chr>, id <chr>
suppressPackageStartupMessages(library("dplyr"))
dplyr::filter(df, grepl("Expenses", account), grepl("trip", tags)) %>%
group_by(trip = tags, account) %>%
summarize(trip_total = sum(amount), .groups = "drop")
## # A tibble: 6 × 3
## trip account trip_total
## <chr> <chr> <dbl>
## 1 trip-los-angeles-2022 Expenses:Food:Alcohol 23.4
## 2 trip-los-angeles-2022 Expenses:Food:Coffee 41.9
## 3 trip-los-angeles-2022 Expenses:Food:Restaurant 613.
## 4 trip-los-angeles-2023 Expenses:Food:Alcohol 14.8
## 5 trip-los-angeles-2023 Expenses:Food:Coffee 12.8
## 6 trip-los-angeles-2023 Expenses:Food:Restaurant 739.
rio::import()
and rio::convert()
If one has loaded in the ledger
package one can also use rio::import
to read in the register:
df2 <- rio::import(bean_example_file)
all.equal(df, tibble::as_tibble(df2))
## [1] TRUE
The main advantage of this is that it allows one to use rio::convert
to easily convert plaintext accounting files to several other file formats such as a csv file. Here is a shell example:
bean-example -o example.beancount
Rscript --default-packages=ledger,rio -e 'convert("example.beancount", "example.csv")'
net_worth()
Some examples of using the net_worth
function using the example files from the register
examples:
dates <- seq(as.Date("2016-01-01"), as.Date("2018-01-01"), by="years")
net_worth(ledger_file, dates)
## # A tibble: 3 × 6
## date commodity net_worth assets liabilities revalued
## <date> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-01 USD 5000 5000 0 0
## 2 2017-01-01 USD 4361. 4882 -521. 0
## 3 2018-01-01 USD 6743. 6264 -521. 1000
net_worth(hledger_file, dates)
## # A tibble: 3 × 5
## date commodity net_worth assets liabilities
## <date> <chr> <dbl> <dbl> <dbl>
## 1 2016-01-01 USD 5000 5000 0
## 2 2017-01-01 USD 4361. 4882 -521.
## 3 2018-01-01 USD 6743. 7264 -521.
net_worth(beancount_file, dates)
## # A tibble: 3 × 5
## date commodity net_worth assets liabilities
## <date> <chr> <dbl> <dbl> <dbl>
## 1 2016-01-01 USD 5000 5000 0
## 2 2017-01-01 USD 4361. 4882 -521.
## 3 2018-01-01 USD 6743. 7264 -521.
dates <- seq(min(as.Date(df$date)), max(as.Date(df$date)), by="years")
net_worth(bean_example_file, dates)
## # A tibble: 6 × 5
## date commodity net_worth assets liabilities
## <date> <chr> <dbl> <dbl> <dbl>
## 1 2023-01-01 IRAUSD 0 0 0
## 2 2023-01-01 USD 38821. 40256 -1435.
## 3 2023-01-01 VACHR 26 26 0
## 4 2024-01-01 IRAUSD 0 0 0
## 5 2024-01-01 USD 83645. 85451. -1806.
## 6 2024-01-01 VACHR 52 52 0
prune_coa()
Some examples using the prune_coa
function to simplify the “Chart of Account” names to a given maximum depth:
suppressPackageStartupMessages(library("dplyr"))
df <- register(bean_example_file) %>% dplyr::filter(!is.na(commodity))
df %>% prune_coa() %>%
group_by(account, mv_commodity) %>%
summarize(market_value = sum(market_value), .groups = "drop")
## # A tibble: 11 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Assets IRAUSD 6500
## 2 Assets USD 99028.
## 3 Assets VACHR 102
## 4 Equity USD -3783.
## 5 Expenses IRAUSD 49000
## 6 Expenses USD 224444.
## 7 Expenses VACHR 208
## 8 Income IRAUSD -55500
## 9 Income USD -313541.
## 10 Income VACHR -310
## 11 Liabilities USD -2382.
df %>% prune_coa(2) %>%
group_by(account, mv_commodity) %>%
summarize(market_value = sum(market_value), .groups = "drop")
## # A tibble: 17 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Assets:US IRAUSD 6500
## 2 Assets:US USD 99028.
## 3 Assets:US VACHR 102
## 4 Equity:Opening-Balances USD -3783.
## 5 Expenses:Financial USD 438.
## 6 Expenses:Food USD 17109.
## 7 Expenses:Health USD 6008.
## 8 Expenses:Home USD 72865.
## 9 Expenses:Taxes IRAUSD 49000
## 10 Expenses:Taxes USD 124784.
## 11 Expenses:Transport USD 3240
## 12 Expenses:Vacation VACHR 208
## 13 Income:US IRAUSD -55500
## 14 Income:US USD -313541.
## 15 Income:US VACHR -310
## 16 Liabilities:AccountsPayable USD 0
## 17 Liabilities:US USD -2382.
Here is some examples using the functions in the package to help generate various personal accounting reports of the beancount example generated by bean-example
.
First we load the (mainly tidyverse) libraries we’ll be using and adjusting terminal output:
library("ledger")
library("dplyr")
filter <- dplyr::filter
library("ggplot2")
library("scales")
library("tidyr")
library("zoo")
filename <- tempfile(fileext = ".beancount")
system(paste("bean-example -o", filename), ignore.stderr=TRUE)
df <- register(filename) %>% mutate(yearmon = zoo::as.yearmon(date)) %>%
filter(commodity=="USD")
nw <- net_worth(filename)
Then we’ll write some convenience functions we’ll use over and over again:
print_tibble_rows <- function(df) {
print(df, n=nrow(df))
}
count_beans <- function(df, filter_str = "", ...,
amount = "amount",
commodity="commodity",
cutoff=1e-3) {
commodity <- sym(commodity)
amount_var <- sym(amount)
filter(df, grepl(filter_str, account)) %>%
group_by(account, !!commodity, ...) %>%
summarize(!!amount := sum(!!amount_var), .groups = "drop") %>%
filter(abs(!!amount_var) > cutoff & !is.na(!!amount_var)) %>%
arrange(desc(abs(!!amount_var)))
}
Here is some basic balance sheets (using the market value of our assets):
print_balance_sheet <- function(df) {
assets <- count_beans(df, "^Assets",
amount="market_value", commodity="mv_commodity")
print_tibble_rows(assets)
liabilities <- count_beans(df, "^Liabilities",
amount="market_value", commodity="mv_commodity")
print_tibble_rows(liabilities)
}
print(nw)
## # A tibble: 3 × 5
## date commodity net_worth assets liabilities
## <date> <chr> <dbl> <dbl> <dbl>
## 1 2024-05-19 IRAUSD 6500 6500 0
## 2 2024-05-19 USD 100688. 102388. -1701.
## 3 2024-05-19 VACHR 110 110 0
print_balance_sheet(prune_coa(df, 2))
## # A tibble: 1 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Assets:US USD 2273.
## # A tibble: 1 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Liabilities:US USD -1701.
print_balance_sheet(df)
## # A tibble: 3 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Assets:US:BofA:Checking USD 1857.
## 2 Assets:US:ETrade:Cash USD 417.
## 3 Assets:US:Vanguard:Cash USD -0.180
## # A tibble: 1 × 3
## account mv_commodity market_value
## <chr> <chr> <dbl>
## 1 Liabilities:US:Chase:Slate USD -1701.
Here is a basic chart of one’s net worth from the beginning of the plaintext accounting file to today by month:
next_month <- function(date) {
zoo::as.Date(zoo::as.yearmon(date) + 1/12)
}
nw_dates <- seq(next_month(min(df$date)), next_month(Sys.Date()), by="months")
df_nw <- net_worth(filename, nw_dates) %>% filter(commodity=="USD")
ggplot(df_nw, aes(x=date, y=net_worth, colour=commodity, group=commodity)) +
geom_line() + scale_y_continuous(labels=scales::dollar)
month_cutoff <- zoo::as.yearmon(Sys.Date()) - 2/12
compute_income <- function(df) {
count_beans(df, "^Income", yearmon) %>%
mutate(income = -amount) %>%
select(-amount) %>% ungroup()
}
print_income <- function(df) {
compute_income(df) %>%
filter(yearmon >= month_cutoff) %>%
spread(yearmon, income, fill=0) %>%
print_tibble_rows()
}
compute_expenses <- function(df) {
count_beans(df, "^Expenses", yearmon) %>%
mutate(expenses = amount) %>%
select(-amount) %>% ungroup()
}
print_expenses <- function(df) {
compute_expenses(df) %>%
filter(yearmon >= month_cutoff) %>%
spread(yearmon, expenses, fill=0) %>%
print_tibble_rows()
}
compute_total <- function(df) {
full_join(compute_income(prune_coa(df)) %>% select(-account),
compute_expenses(prune_coa(df)) %>% select(-account),
by=c("yearmon", "commodity")) %>%
mutate(income = ifelse(is.na(income), 0, income),
expenses = ifelse(is.na(expenses), 0, expenses),
net = income - expenses) %>%
gather(type, amount, -yearmon, -commodity)
}
print_total <- function(df) {
compute_total(df) %>%
filter(yearmon >= month_cutoff) %>%
spread(yearmon, amount, fill=0) %>%
print_tibble_rows()
}
print_total(df)
## # A tibble: 3 × 5
## commodity type `Mar 2024` `Apr 2024` `May 2024`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 USD expenses 8706. 7496. 2248.
## 2 USD income 11115. 10479. 5240.
## 3 USD net 2410. 2984. 2992.
print_income(prune_coa(df, 2))
## # A tibble: 1 × 5
## account commodity `Mar 2024` `Apr 2024` `May 2024`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Income:US USD 11115. 10479. 5240.
print_expenses(prune_coa(df, 2))
## # A tibble: 6 × 5
## account commodity `Mar 2024` `Apr 2024` `May 2024`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Expenses:Financial USD 39.8 4 13.0
## 2 Expenses:Food USD 649. 592. 146.
## 3 Expenses:Health USD 194. 194. 96.9
## 4 Expenses:Home USD 2612. 2602. 0
## 5 Expenses:Taxes USD 5092. 3984. 1992.
## 6 Expenses:Transport USD 120 120 0
print_income(df)
## # A tibble: 5 × 5
## account commodity `Mar 2024` `Apr 2024` `May 2024`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Income:US:BayBook:GroupTermLife USD 48.6 48.6 24.3
## 2 Income:US:BayBook:Match401k USD 1800 1200 600
## 3 Income:US:BayBook:Salary USD 9231. 9231. 4615.
## 4 Income:US:ETrade:GLD:Dividend USD 95.9 0 0
## 5 Income:US:ETrade:PnL USD -59.8 0 0
print_expenses(df)
## # A tibble: 21 × 5
## account commodity `Mar 2024` `Apr 2024` `May 2024`
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Expenses:Financial:Commissions USD 35.8 0 8.95
## 2 Expenses:Financial:Fees USD 4 4 4
## 3 Expenses:Food:Groceries USD 282. 270. 66.2
## 4 Expenses:Food:Restaurant USD 367. 321. 79.4
## 5 Expenses:Health:Dental:Insurance USD 5.8 5.8 2.9
## 6 Expenses:Health:Life:GroupTermLife USD 48.6 48.6 24.3
## 7 Expenses:Health:Medical:Insurance USD 54.8 54.8 27.4
## 8 Expenses:Health:Vision:Insurance USD 84.6 84.6 42.3
## 9 Expenses:Home:Electricity USD 65 65 0
## 10 Expenses:Home:Internet USD 80.1 80.0 0
## 11 Expenses:Home:Phone USD 66.4 57.1 0
## 12 Expenses:Home:Rent USD 2400 2400 0
## 13 Expenses:Taxes:Y2023:US:Federal USD 632. 0 0
## 14 Expenses:Taxes:Y2023:US:State USD 476. 0 0
## 15 Expenses:Taxes:Y2024:US:CityNYC USD 350. 350. 175.
## 16 Expenses:Taxes:Y2024:US:Federal USD 2126. 2126. 1063.
## 17 Expenses:Taxes:Y2024:US:Medicare USD 213. 213. 107.
## 18 Expenses:Taxes:Y2024:US:SDI USD 2.24 2.24 1.12
## 19 Expenses:Taxes:Y2024:US:SocSec USD 563. 563. 282.
## 20 Expenses:Taxes:Y2024:US:State USD 730. 730. 365.
## 21 Expenses:Transport:Tram USD 120 120 0
And here is a plot of income, expenses, and net income over time:
ggplot(compute_total(df), aes(x=yearmon, y=amount, group=commodity, colour=commodity)) +
facet_grid(type ~ .) +
geom_line() + geom_hline(yintercept=0, linetype="dashed") +
scale_x_continuous() + scale_y_continuous(labels=scales::comma)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.