The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
This document aims at verifying the implementation of the Lemna toxicokinetic-toxicodynamic (TKTD) model as described by Klein et al. (2022). The model is a refined description of the Lemna TKTD model based on Schmitt et al. (2013).
First, this model’s output is compared to published results which were created with the reference implementation of the Schmitt et al. model. For unlimited growth scenarios, both models are expected to yield identical results for identical inputs. Second, model dynamics are compared for additional scenarios which simulate changing environmental conditions, such as under field study conditions. In this case, the models are not expected to yield identical but equivalent behavior due to differences between the models’ response functions.
The outputs of the Lemna TKTD model by Schmitt et al. are used to verify the implementation of the Klein et al. model. The reference implementation of Schmitt et al. is included in this package’s GitHub repository but is not an official part of the package.
Sourcing files mmc2.r
and mmc3.r
gives
access to the Schmitt et al. model equations as well as to the
fitted parameter set for the substance metsulfuron-methyl.
library(lemna) # lemna model
# load packages to ease plotting and data wrangling
library(dplyr) # for data preparation
library(ggplot2) # for plotting
# load model files by Schmitt et al. (2013)
source("mmc2.r")
source("mmc3.r")
# run sample simulation with metsulfuron-methyl parameters
calcgrowth(timepoints = 0:7,
vars = c(BM = 0.0012, E=1, M_int=0),
param = param, # default scenario data
)#> time BM M_int C_int FrondNo
#> 1 0 0.001200000 0.000000000 0.0000000 12.00000
#> 2 1 0.001284774 0.005436458 0.2533803 12.84774
#> 3 2 0.001306316 0.009105453 0.4173850 13.06316
#> 4 3 0.001314398 0.011494598 0.5236614 13.14398
#> 5 4 0.001320074 0.013044177 0.5917003 13.20074
#> 6 5 0.001324988 0.014053436 0.6351173 13.24988
#> 7 6 0.001329581 0.014716554 0.6627886 13.29581
#> 8 7 0.001334016 0.015158319 0.6804143 13.34016
This section simulates several Lemna growth scenarios under unlimited growth conditions using the Klein et al. model. Model dynamics and numerical results are compared to results of the Schmitt et al. model.
Figure 2 in Schmitt et al. (2013) presents several scenarios which simulate the growth of Lemna exposed to several concentrations of metsulfuron-methyl. Exposure lasts for seven days, followed by a seven day recovery period. Symbols show observed data and lines as calculated with fitted model parameters.
# simulate the 7d exposure, 7d recovery experiment
<- function(model=c("schmitt","klein"), ...) {
simulate_7d <- match.arg(model)
model <- seq(0, 14, 0.2) # output time points
time <- c(0, 0.32, 0.56, 1, 1.8, 3.2, 5.6) # simulated exposure levels
levels
# set parameters as needed to replicate Figure 2 from Schmitt et al.
if(model == "schmitt") {
$k_phot_fix <- TRUE # unlimited growth
param$k_phot_max <- 0.4
param$k_resp <- 0
paramelse if(model == "klein") {
} <- metsulfuron$param
param $k_photo_fixed <- TRUE
param$k_photo_max <- 0.4
param$k_loss <- 0
param<- metsulfuron$envir
envir
}
<- data.frame()
result for(conc in levels) {
<- data.frame(time=c(0, 7, 7.01, 14), c=c(conc, conc, 0, 0))
exposure
if(model == "schmitt") {
$Conc <- exposure
param<- calcgrowth(time, c(BM=0.0012, E=1, M_int=0), param=param, ...)
out else if(model == "klein") {
} $conc <- exposure
envir<- lemna(times=time, init=c(BM=0.0012, M_int=0), param=param, envir=envir, ...)
out
}
$level = as.character(conc)
out<- bind_rows(result, out)
result
}
result
}
# simulate using the Schmitt et al. model
<- simulate_7d(model="schmitt")
df_s
# recreate figure 2 from paper, including observed data
ggplot(df_s)+
geom_line(aes(time,FrondNo,color=level))+
geom_point(aes(time,FrondNo,color=level,shape=level), data=schmitt77)+
scale_y_log10(breaks=10^seq(-1,6))+
scale_x_continuous(breaks=seq(0,14,2))+
scale_shape_manual(values=c(0,4,2,8,1,3,5), name="Conc. (ug/L)")+
coord_cartesian(ylim=c(10,10000))+
geom_vline(xintercept=7, linetype="dotted", color="#888888", size=1)+
geom_segment(aes(x=0,y=10000,xend=6.9,yend=10000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_segment(aes(x=7.1,y=10000,xend=14,yend=10000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_text(aes(x=3.5,y=8000,label="Exposure",hjust="middle"),color="#888888")+
geom_text(aes(x=10.5,y=8000,label="Recovery",hjust="middle"),color="#888888")+
theme_bw()+
labs(x="Time (days)", y="Number of Fronds", color="Conc. (ug/L)",
title="Schmitt et al. model: 7d exposure, 7d recovery")
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> ℹ Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
The depicted model dynamics of the Schmitt et al. are identical to published results. Simulating the same scenarios using the Klein et al. model yields identical dynamics:
# simulate using the Klein et al. model
<- simulate_7d(model="klein")
df_k
# recreate figure 2 from paper, including observed data
ggplot(df_k)+
geom_line(aes(time,FrondNo,color=level))+
geom_point(aes(time,FrondNo,color=level,shape=level), data=schmitt77)+
scale_y_log10(breaks=10^seq(-1,6))+
scale_x_continuous(breaks=seq(0,14,2))+
scale_shape_manual(values=c(0,4,2,8,1,3,5), name="Conc. (ug/L)")+
coord_cartesian(ylim=c(10,10000))+
geom_vline(xintercept=7, linetype="dotted", color="#888888", size=1)+
geom_segment(aes(x=0,y=10000,xend=6.9,yend=10000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_segment(aes(x=7.1,y=10000,xend=14,yend=10000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_text(aes(x=3.5,y=8000,label="Exposure",hjust="middle"),color="#888888")+
geom_text(aes(x=10.5,y=8000,label="Recovery",hjust="middle"),color="#888888")+
theme_bw()+
labs(x="Time (days)", y="Number of Fronds", color="Conc. (ug/L)",
title="Klein et al. model: 7d exposure, 7d recovery")
A comparison of numerical values between the two models shows that simulated biomass deviates at most by 0.15%. A plot of relative errors describes small but consistent deviations in biomass results:
%>%
df_s mutate(error = 100 * (df_k$BM/BM - 1)) %>%
ggplot(aes(time, error, color=level)) +
geom_point() +
theme_bw() +
labs(x="Time (days)", y="Relative error (%)", color="Conc. (ug/L)",
title="Deviation in biomass in Klein model relative to Schmitt")
The deviations are a result of imprecisions introduced by the
numerical ODE solver. Numerical precision can be increased by, for
example, decreasing the solver’s step length in time. This can be
achieved by decreasing the solver parameter hmax
from the
model’s default value of hmax=0.1
to
e.g. hmax=0.01
. The value of 0.01
is
equivalent to a step length of about 15 minutes. This decreases the
observed deviations significantly to a maximum of about 0.007%:
<- simulate_7d(model="schmitt", hmax=0.01)
df_s <- simulate_7d(model="klein", hmax=0.01)
df_k
%>%
df_s mutate(error = 100 * (df_k$BM/BM - 1)) %>%
ggplot(aes(time, error, color=level)) +
geom_point() +
theme_bw() +
labs(x="Time (days)", y="Relative error (%)", color="Conc. (ug/L)",
title="Deviation in biomass in Klein model relative to Schmitt, hmax=0.01")
It can be concluded that model dynamics and numerical results are identical as far as numerical precision allows.
The right-hand side of Figure 3 in Hommen et al. (2015) presents additional scenarios which simulate the growth of Lemna exposed to several concentrations of metsulfuron-methyl. Exposure lasts for two days, followed by a twelve day recovery period. Symbols show observed data and lines as calculated with fitted model parameters:
# simulate the 2d exposure, 12d recovery experiment
<- function(model=c("schmitt","klein"), ...) {
simulate_2d <- match.arg(model)
model <- seq(0, 14, 0.2) # output time points
time <- c(0, 0.35, 0.875, 1.75, 3.5) # simulated exposure levels
levels
# set parameters as needed to replicate Figure 3 from Hommen et al.
if(model == "schmitt") {
$k_phot_fix <- TRUE # unlimited growth
param$k_phot_max <- 0.295
param$k_resp <- 0.00
param$mass_per_frond <- 0.0004
paramelse if(model == "klein") {
} <- metsulfuron$param
param $k_photo_fixed <- TRUE
param$k_photo_max <- 0.295
param$k_loss <- 0
param$r_DW_FN <- 0.0004
param<- metsulfuron$envir
envir
}
<- data.frame()
result for(conc in levels) {
<- data.frame(time=c(0, 2, 2.01, 14), c=c(conc, conc, 0, 0))
exposure
if(model == "schmitt") {
$Conc <- exposure
param<- calcgrowth(time, c(BM=12 * param$mass_per_frond, E=1, M_int=0), param=param, ...)
out else if(model == "klein") {
} $conc <- exposure
envir<- lemna(times=time, init=c(BM=12 * param$r_DW_FN, M_int=0), param=param, envir=envir, ...)
out
}
$level = as.character(conc)
out<- bind_rows(result, out)
result
}
result
}
# simulate using the Klein et al. model
<- simulate_2d(model="klein")
df_k
# recreate figure 3 from paper, including observed data
ggplot(df_k)+
geom_line(aes(time,FrondNo,color=level))+
geom_point(aes(time,FrondNo,color=level,shape=level), data=hommen212)+
scale_y_log10(breaks=10^seq(-1,6))+
scale_x_continuous(breaks=seq(0,14,2))+
scale_shape_manual(values=c(0,4,2,8,1,3,5), name="Conc. (ug/L)")+
coord_cartesian(ylim=c(10,1000))+
geom_vline(xintercept=2, linetype="dotted", color="#888888", size=1)+
geom_segment(aes(x=0,y=1000,xend=1.9,yend=1000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_segment(aes(x=2.1,y=1000,xend=14,yend=1000),arrow=arrow(length=unit(0.3,"cm"),type="closed"),linejoin="mitre",size=1,color="#888888")+
geom_text(aes(x=1,y=800,label="Exposure",hjust="middle"),color="#888888")+
geom_text(aes(x=8,y=800,label="Recovery",hjust="middle"),color="#888888")+
theme_bw()+
labs(x="Time (days)", y="Number of Fronds", color="Conc. (ug/L)",
title="Klein et al. model: 2d exposure, 12d recovery")
Observed model dynamics of the Klein et al. model are identical to published results and fit equally well with the observed frond numbers reported by Hommen et al. A comparison of numerical values of simulated biomass yields:
# simulate using the Schmitt et al. model
<- simulate_2d(model="schmitt", hmax=0.01)
df_s # simulate using the Klein et al. model
<- simulate_2d(model="klein", hmax=0.01)
df_k
# calculate relative
%>%
df_s mutate(error = 100 * (df_k$BM/BM - 1)) %>%
pull(error) %>%
abs() %>%
max()
#> [1] 0.004476714
Numerical biomass values deviate at most by about 0.004% between the two models. It can be concluded that model dynamics and numerical results of both models are identical for the presented scenarios.
Figure 4 in Schmitt et al. (2013) depicts the growth of Lemna exposed to three exposure patterns of several different concentrations. The patterns include constant exposure, repeating intervals of four days out of seven of exposure, as well as repeating intervals of two days out of seven of exposure.
First, the constant exposure pattern (Figure 4a) is simulated:
# simulate a specific exposure pattern
<- function(model=c("schmitt","klein"), levels, expo_fun, ...) {
simulate_pattern <- match.arg(model)
model <- seq(0, 50, 0.2) # output time points
time
# set parameters as needed to replicate Figure 2 from Schmitt et al.
if(model == "schmitt") {
$k_phot_fix <- TRUE # unlimited growth
param$k_phot_max <- 0.295
param$EC50 <- 0.39
param$k_resp <- 0
paramelse if(model == "klein") {
} <- metsulfuron$param
param $k_photo_fixed <- TRUE
param$k_photo_max <- 0.295
param$EC50_int <- 0.39
param$k_loss <- 0
param<- metsulfuron$envir
envir
}
<- data.frame()
result for(conc in levels) {
<- expo_fun(conc)
exposure
if(model == "schmitt") {
$Conc <- exposure
param<- calcgrowth(time, c(BM=0.0006, E=1, M_int=0), param=param, hmax=0.01)
out $Area <- out$BM * param$AperBM
outelse if(model == "klein") {
} $conc <- exposure
envir<- lemna(times=time, init=c(BM=0.0006, M_int=0), param=param, envir=envir, hmax=0.01)
out $Area <- out$BM * param$r_A_DW
out
}
$level = as.character(conc)
out<- bind_rows(result, out)
result
}
result
}
# constant exposure
<- function(conc=1) {
expo_const data.frame(time=c(0, 50), c=c(conc, conc))
}# exposure concentrations used for constant patterns
<- c(0, 0.1, 0.25, 0.5, 1)
levels_const
# simulate constant exposure patterns
<- simulate_pattern(model="klein", levels=levels_const, expo_fun=expo_const)
df_p1
ggplot(df_p1)+
geom_line(aes(time,Area,color=level))+
scale_y_log10(breaks=10^seq(-1,7),minor_breaks=NULL)+
scale_x_continuous(breaks=seq(0,50,10))+
scale_shape_manual(values=c(0,4,2,8,1,3,5))+
coord_cartesian(ylim=c(0.1,10^7))+
theme_bw()+
labs(x="Time (days)", y="Frond area (cm²)", color="Conc. (ug/L)",
title="Klein et al. model: constant exposure")
Next, the four out of seven days exposure pattern (Figure 4b) is simulated:
# exposure pattern: repeats 4d exposure, 3d recovery for 42 days,
# followed by recovery for 8 days
<- function(conc=1) {
expo_4of7 <- c(0, 4, 4.01, 6.99)
tim <- c(conc, conc, 0, 0)
exp
<- c()
tim_all <- c()
exp_all for(i in seq(0,35, 7)) {
<- c(tim_all, tim+i)
tim_all <- c(exp_all, exp)
exp_all
}data.frame("time"=c(tim_all, 50), "conc"=c(exp_all, 0))
}# exposure concentrations used for 4 out of 7d patterns
<- c(0, 0.175, 0.438, 0.875, 1.75)
levels_4of7
<- simulate_pattern(model="klein", levels=levels_4of7, expo_fun=expo_4of7)
df_p2
ggplot(df_p2)+
geom_line(aes(time,Area,color=level))+
scale_y_log10(breaks=10^seq(-1,7),minor_breaks=NULL)+
scale_x_continuous(breaks=seq(0,50,10))+
scale_shape_manual(values=c(0,4,2,8,1,3,5))+
coord_cartesian(ylim=c(0.1,10^7))+
theme_bw()+
labs(x="Time (days)", y="Frond area (cm²)", color="Conc. (ug/L)",
title="Klein et al. model: 4 out of 7d of exposure")
Finally, the two out of seven days exposure pattern (Figure 4c) is simulated:
# exposure pattern: repeats 2d exposure, 5d recovery for 42 days,
# followed by recovery for 8 days
<- function(conc=1) {
expo_2of7 <- c(0, 2, 2.01, 6.99)
tim <- c(conc, conc, 0, 0)
exp
<- c()
tim_all <- c()
exp_all for(i in seq(0,35, 7)) {
<- c(tim_all, tim+i)
tim_all <- c(exp_all, exp)
exp_all
}data.frame("time"=c(tim_all, 50), "conc"=c(exp_all, 0))
}# exposure concentrations used for 2 out of 7d patterns
<- c(0, 0.35, 0.875, 1.75, 3.5)
levels_2of7
<- simulate_pattern(model="klein", levels=levels_2of7, expo_fun=expo_2of7)
df_p3
ggplot(df_p3)+
geom_line(aes(time,Area,color=level))+
scale_y_log10(breaks=10^seq(-1,7),minor_breaks=NULL)+
scale_x_continuous(breaks=seq(0,50,10))+
scale_shape_manual(values=c(0,4,2,8,1,3,5))+
coord_cartesian(ylim=c(0.1,10^7))+
theme_bw()+
labs(x="Time (days)", y="Frond area (cm²)", color="Conc. (ug/L)",
title="Klein et al. model: 2 out of 7d of exposure")
Comparing numerical results of the Klein et al. model with the Schmitt et al. implementation yields the following relative errors in percent:
# relative error (%) for the constant exposure pattern
simulate_pattern(model="schmitt", levels=levels_const, expo_fun=expo_const) %>%
mutate(error = 100 * (df_p1$BM/BM - 1)) %>%
pull(error) %>%
abs() %>%
max()
#> [1] 0.0005302434
# relative error (%) for the 4 out of 7d exposure pattern
simulate_pattern(model="schmitt", levels=levels_4of7, expo_fun=expo_4of7) %>%
mutate(error = 100 * (df_p2$BM/BM - 1)) %>%
pull(error) %>%
abs() %>%
max()
#> [1] 0.03496461
# relative error (%) for the 2 out of 7d exposure pattern
simulate_pattern(model="schmitt", levels=levels_2of7, expo_fun=expo_2of7) %>%
mutate(error = 100 * (df_p3$BM/BM - 1)) %>%
pull(error) %>%
abs() %>%
max()
#> [1] 0.02197463
It can be observed that the Klein et al. model reproduces the same model dynamics and biomass amounts as reported by Schmitt et al. under unlimited growth conditions.
In this section, simulated biomass dynamics of the Klein et al. model are compared to published results under conditions of changing environmental variables. In contrast to the Schmitt et al. model, it applies Liebig’s Law so that growth is controlled by the most limiting resource, i.e. the limiting factor. The environmental variables temperature, global radiation, phosphorus, and nitrate are considered for Liebig’s law (Klein et al. 2015).
The following graphs will replicate Figure 5 from Hommen et al. (2015). The simulations make use of exposure time series and time series of environmental variables that were extracted from the three FOCUS Surface Water exposure scenarios D1 Ditch, D2 Ditch, and R3 Stream. Substance specific parameters follow the fitted parameters reported by Schmitt et al. (2013).
The following code simulates Lemna population growth for the example FOCUS exposure pattern D1 Ditch multiplied by factors from 1 to 100:
library(tidyr) # for additional data preparation
library(furrr) # for multi-threading capabilities
# enable multithreading to reduce processing time
::plan("multisession")
future
<- function(df, exposure, scale_f, title) {
rainbow_plot # scale exposure concentration to make it visible in plot
<- exposure %>% mutate(Conc = Conc * scale_f)
df_expo # do not plot control
<- df %>% filter(factor != "0")
df_plot # create rainbow plot
ggplot(df_plot)+
geom_line(aes(time, BM, color=factor))+
geom_line(aes(Time,Conc), data=df_expo, color="black")+
scale_color_manual(values=setNames(rev(RColorBrewer::brewer.pal(11, "Spectral")), unique(df_plot$factor)))+
scale_y_continuous(breaks=seq(0,200,20))+
scale_x_continuous(breaks=seq(0,390,30))+
coord_cartesian(ylim=c(0,180),expand=FALSE)+
theme_bw()+
labs(x="Time (days)", y="Dry biomass (g dw/m2)", title=title)
}
<- function(scale_f, model, scenario) {
simulate_focus if(model == "schmitt") {
$k_phot_fix <- FALSE
param$mass_per_frond <- 0.0004
param$Conc <- scenario$envir$conc
param$Conc$Conc <- param$Conc$Conc * scale_f
param$Temp <- scenario$envir$tmp
param$Rad <- scenario$envir$irr
param<- calcgrowth(scenario$times, c(BM=scenario$init[["BM"]], E=1, M_int=0), param, hmax=0.01)
res else if(model == "klein") {
} <- scenario$envir
envir $conc$Conc <- envir$conc$Conc * scale_f
envir<- lemna(scenario, envir=envir, nout=0, hmax=0.01)
res
}$factor <- as.character(scale_f)
res
res
}
# multiplication factors for the exposure series
<- c(0, round(10^seq(0,2,0.2), 1))
factors
# simulate using the Schmitt et al. model
<- future_map_dfr(factors, simulate_focus, model="schmitt", scenario=focusd1)
df_s rainbow_plot(df_s, focusd1$envir$conc, 2000, "D1 Ditch: Schmitt et al. model, L. gibba")
# simulate using the Klein et al. model
<- future_map_dfr(factors, simulate_focus, model="klein", scenario=focusd1)
df_k rainbow_plot(df_k, focusd1$envir$conc, 2000, "D1 Ditch: Klein et al. model, L. gibba")
It can be observed that the Klein et al. model generates biomass dynamics that are very similar to the Schmitt et al. results. Comparing biomass values for each time point and multiplication factor yields the following graph:
<- function(res_klein, res_schmitt, title) {
bm_dev_plot <- unique(res_klein$factor)
fs
%>%
res_schmitt mutate(error = 100 * (res_klein$BM/BM - 1)) %>%
ggplot(aes(time, error, color=factor)) +
geom_point() +
scale_color_manual(values=setNames(c("black",rev(RColorBrewer::brewer.pal(length(fs) - 1, "Spectral"))), fs)) +
scale_x_continuous(breaks=seq(0,390,30)) +
theme_bw() +
labs(x="Time (days)", y="Relative error (%)", color="Factor",
title=paste0(title, ": Deviation of biomass in Klein model relative to Schmitt"))
}
bm_dev_plot(df_k, df_s, "D1 Ditch")
For D1 Ditch, the Klein et al. model shows a trend to a slightly larger biomass over the course of the simulated year. Achieved biomass levels are nevertheless very similar in both models. The perceived differences seem to originate from the fact that model results are slightly shifted in time. This observation can be explained by the photosynthesis response function of the Klein et al. model, where growth is controlled by the most limiting factor. Unlike the Schmitt et al. model, where all response functions are multiplied. This allows the population to react quicker to changing environmental conditions and achieve slightly larger biomass in the Klein et al. model. Generally, both models generate similar growth dynamics.
The following table reproduces Table 2 from Hommen et al. (2015). It lists the number of days with deviations from controls exceeding different magnitudes (% dev) depending on the exposure multiplication factor in the D1 Ditch scenario:
%>%
df_k pivot_wider(id_cols=time, names_from=factor, values_from=BM) -> df.wide
# table of days with deviations
100*abs(1 - df.wide[-c(1,2)]/df.wide[,c(rep(2,11))])) %>%
(pivot_longer(1:11, names_to="factor", values_to="dev") %>%
group_by(factor) %>%
summarize(gt1=sum(dev>1),gt5=sum(dev>5),gt10=sum(dev>10),gt20=sum(dev>20),
gt30=sum(dev>30),gt40=sum(dev>40),gt50=sum(dev>50),gt60=sum(dev>60),
gt70=sum(dev>70),gt80=sum(dev>80),gt90=sum(dev>90)) %>%
arrange(as.numeric(factor)) %>%
pivot_longer(cols=2:11, names_to="class", values_to="count") %>%
pivot_wider(id_cols=class, names_from=factor, values_from=count) %>%
mutate(class = paste0("> ",substring(class, 3))) %>%
rename(`% dev`=class) %>%
::kable() knitr
% dev | 1 | 1.6 | 2.5 | 4 | 6.3 | 10 | 15.8 | 25.1 | 39.8 | 63.1 | 100 |
---|---|---|---|---|---|---|---|---|---|---|---|
> 1 | 0 | 0 | 15 | 47 | 68 | 131 | 149 | 200 | 209 | 218 | 231 |
> 5 | 0 | 0 | 0 | 20 | 45 | 66 | 100 | 126 | 161 | 179 | 187 |
> 10 | 0 | 0 | 0 | 0 | 29 | 55 | 75 | 104 | 115 | 130 | 142 |
> 20 | 0 | 0 | 0 | 0 | 18 | 35 | 60 | 81 | 98 | 107 | 116 |
> 30 | 0 | 0 | 0 | 0 | 0 | 22 | 47 | 68 | 81 | 88 | 98 |
> 40 | 0 | 0 | 0 | 0 | 0 | 17 | 38 | 55 | 68 | 76 | 85 |
> 50 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 47 | 56 | 63 | 71 |
> 60 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 34 | 49 | 56 | 62 |
> 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 34 | 43 | 48 |
> 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Predictions of the Klein et al. model are again very similar to the results reported by Hommen et al. (2015). The number of days with deviations do appear to have a small trend to lower numbers compared to the results of the Schmitt et al. model. As an example: for a multiplication factor of 4, 47 days experience a deviation in biomass of at least 1% compared to 50 days as reported by Hommen et al.
Simulating Lemna population growth for the example FOCUS exposure pattern D2 Ditch multiplied by factors from 1 to 100:
# simulate using the Schmitt et al. model
<- future_map_dfr(factors, simulate_focus, model="schmitt", scenario=focusd2)
df_s rainbow_plot(df_s, focusd2$envir$conc, 100, "D2 Ditch: Schmitt et al. model, L. gibba")
# simulate using the Klein et al. model
<- future_map_dfr(factors, simulate_focus, model="klein", scenario=focusd2)
df_k rainbow_plot(df_k, focusd2$envir$conc, 100, "D2 Ditch: Klein et al. model, L. gibba")
bm_dev_plot(df_k, df_s, "D2 Ditch")
Biomass dynamics and absolute numbers are again very similar to the behavior reported by Hommen et al. (2015). Generally, the Klein et al. model shows a trend towards temporary larger biomass values which can be explained by the model reacting quicker to changes in environmental variables. Biomass levels at the end of the simulated year are slightly lower for low and moderate exposure levels than predictions of the Schmitt et al. model.
Simulating Lemna population growth for the example FOCUS exposure pattern R3 Stream multiplied by factors from 1 to 1000:
# multiplication factors for the exposure series
<- c(0, round(10^seq(0,3,0.3), 1))
factors
# simulate using the Schmitt et al. model
<- future_map_dfr(factors, simulate_focus, model="schmitt", scenario=focusr3)
df_s rainbow_plot(df_s, focusr3$envir$conc, 1000, "R3 Stream: Schmitt et al. model, L. gibba")
# simulate using the Klein et al. model
<- future_map_dfr(factors, simulate_focus, model="klein", scenario=focusr3)
df_k rainbow_plot(df_k, focusr3$envir$conc, 1000, "R3 Stream: Klein et al. model, L. gibba")
bm_dev_plot(df_k, df_s, "R3 Stream")
# disable multithreading
::plan("sequential") future
Again, biomass dynamics and absolute numbers are very similar to the behavior reported by Hommen et al. (2015) with a small trend towards a larger biomass in the Klein et al. model.
Model equations implemented as compiled code in C are not part of this verification document for reasons of brevity. However, results of the C code are identical as far as numerical precision allows. This is ensured by automated unit tests which are shipped as part of the lemna source package. The suite of verification tests can be run manually by:
::test(pkg="lemna", filter="verify") devtools
The author would like to thank U. Hommen and S. Heine for providing the original data sets and scripts which were used for past publications, as well as J. Klein and J. Witt for their feedback and suggestions.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.