The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
You can download the package by:
install.packages("logisticRR")
library(logisticRR)
or you can directly download the development version from author’s Github
install.packages("devtools")
library(devtools)
install_github("youjin1207/logisticRR")
Here is a R vignettes for guidance. Or you can access to vignettes via:
install_github("youjin1207/logisticRR", build_vignettes = TRUE)
library(logisticRR)
vignette("logisticRR", package = "logisticRR")
n <- 500
set.seed(1234)
X <- rbinom(n, 1, 0.3)
W <- rbinom(n, 1, 0.3); W[sample(1:n, n/3)] = 2
Z <- rep(0, n)
Z[sample(1:n, n/2)] <- "female"; Z <- ifelse(Z == 0, "male", Z)
dummyZ <- ifelse(Z == "female", 1, 0)
Y <- rbinom(n, 1, plogis(X - W + 2*dummyZ))
dat <- as.data.frame(cbind(Y, X, W, Z))
dat$X <- as.numeric(dat$X); dat$X <- ifelse(dat$X == 2, 1, 0)
dat$Y <- as.numeric(dat$Y); dat$Y <- ifelse(dat$Y == 2, 1, 0)
dat$W <- as.factor(dat$W)
dat$Z <- as.factor(dat$Z)
simresult <- logisticRR(Y ~ X + W + Z, data = dat, boot = TRUE, n.boot = 200)
var(simresult$boot.rr)
simresult$delta.var
simresult$RR
nominalresult <- logisticRR(Y ~ W + X + Z, data = dat, boot = TRUE, n.boot = 200)
var(nominalresult$boot.rr)
nominalresult$delta.var
nominalresult$RR
When reponse variable takes more than two values, multinomial logistic regression is widely used to reveal association between the response variable and exposure variable. In that case, relative risk of each category compared to the reference category can be considered, conditional on other fixed covariates. Other than (adjusted) relative risk, relative risks ratio (RRR) is often of interest in multinomial logistic regression.
dat$multiY <- ifelse(dat$X == 1, rbinom(n, 1, 0.8) + dat$Y, rbinom(n, 1, 0.2) + dat$Y)
multiresult <- multiRR(multiY ~ X + W + Z, data = dat, boot = TRUE, n.boot = 1000)
apply(multiresult$boot.rr, 2, sd)
sqrt(multiresult$delta.var)
multiresult$RRR
multiresult$RR
Similar to the binary reponse, in multinomial logistic regression model, categorical exposure variable can be introduced; in this case, baseline value and comparative value of exposure variable should be specified.
multinresult <- multinRR(multiY ~ W + X + Z, data = dat, basecov = 0, comparecov = 1, boot = TRUE, n.boot = 1000)
apply(multinresult$boot.rr, 2, sd)
sqrt(multinresult$delta.var)
multinresult$RRR
multinresult$RR
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.