The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
require(lolR)
require(ggplot2)
require(MASS)
n=400
d=30
r=3
Data for this notebook will be n=400
examples of d=30
dimensions.
We first visualize the first 2
dimensions:
testdat <- lol.sims.cigar(n, d)
X <- testdat$X
Y <- testdat$Y
data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Simulated Data")
Projecting with PCA to 3
dimensions and visualizing the first 2
:
result <- lol.project.pca(X, r)
data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Projected Data using PCA")
Projecting with LDA to K-1=1
dimensions:
liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)
data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
geom_density(adjust=1.5, alpha=0.6) +
xlab("$x_1$") +
ylab("Density") +
ggtitle(sprintf("PCA-LDA, L = %.2f", lhat))
We visualize the first 2
dimensions:
testdat <- lol.sims.rtrunk(n, d)
X <- testdat$X
Y <- testdat$Y
data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Simulated Data")
Projecting with PCA to 3
dimensions and visualizing the first 2
:
result <- lol.project.pca(X, r)
data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Projected Data using PCA")
Projecting with LDA to K-1=1
dimensions:
liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)
data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
geom_density(adjust=1.5, alpha=0.6) +
xlab("x1") +
ylab("Density") +
ggtitle(sprintf("PCA-LDA, L = %.2f", lhat))
We visualize the first 2
dimensions:
testdat <- lol.sims.rtrunk(n, d, rotate=TRUE)
X <- testdat$X
Y <- testdat$Y
data <- data.frame(x1=X[,1], x2=X[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Simulated Data")
Projecting with PCA to 3
dimensions and visualizing the first 2
:
result <- lol.project.pca(X, r)
data <- data.frame(x1=result$Xr[,1], x2=result$Xr[,2], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, y=x2, color=y)) +
geom_point() +
xlab("x1") +
ylab("x2") +
ggtitle("Projected Data using PCA")
Projecting with LDA to K-1=1
dimensions:
liney <- MASS::lda(result$Xr, Y)
result <- predict(liney, result$Xr)
lhat <- 1 - sum(result$class == Y)/length(Y)
data <- data.frame(x1=result$x[,1], y=Y)
data$y <- factor(data$y)
ggplot(data, aes(x=x1, fill=y)) +
geom_density(adjust=1.5, alpha=0.6) +
xlab("x1") +
ylab("Density") +
ggtitle(sprintf("PCA-LDA, L = %.2f", lhat))
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.