Type: | Package |
Title: | Robust Linear Quantile Regression |
Version: | 5.2 |
Date: | 2024-07-12 |
Author: | Christian E. Galarza <chedgala@espol.edu.ec>, Luis Benites <lbenitess@pucp.edu.pe>, Marcelo Bourguignon <m.p.bourguignon@gmail.com>, Victor H. Lachos <hlachos@uconn.edu> |
Maintainer: | Christian E. Galarza <cgalarza88@gmail.com> |
Imports: | graphics, stats, spatstat.univar, numDeriv, MomTrunc, quantreg, MASS |
Suggests: | ald |
Description: | It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. Missing values and censored observations can be handled as well. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution. It also performs logistic quantile regression for bounded responses as shown in Galarza et.al.(2020) <doi:10.1007/s13571-020-00231-0>. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Packaged: | 2024-07-12 19:43:56 UTC; cgala |
Repository: | CRAN |
Date/Publication: | 2024-07-12 20:10:01 UTC |
Robust Linear Quantile Regression
Description
It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously. Details of its first version can be found below.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C., Lachos, V. H. & Bourguignon M. (2021). A skew-t quantile regression for censored and missing data. Stat.<doi:10.1002/sta4.379>.
Galarza C.E., Lachos V.H. & Panpan Z. (2020) Logistic quantile regression for bounded outcomes using a family of heavy-tailed distributions. Sankhya B. <doi:10.1007/s13571-020-00231-0>.
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
See Also
SKD
,Log.best.lqr
,
Log.lqr
,best.lqr
,lqr
,
ais
Moments of the Generalized Inverse Gaussian Distribution
Description
Expected value of X, log(X), 1/X and variance for the generalized inverse gaussian distribution. This function has been recycled from the ghyp R package.
Usage
Egig(lambda, chi, psi, func = c("x", "logx", "1/x", "var"))
Arguments
lambda |
A shape and scale and parameter. |
chi , psi |
Shape and scale parameters. Must be positive. |
func |
The transformation function when computing the expected value.
|
Details
Egig
with func = "log x"
uses
grad
from the R package numDeriv. See
the package vignette for details regarding the expectation of GIG
random variables.
Value
Egig
gives the expected value
of either x
, 1/x
, log(x)
or the variance if func
equals var
.
Author(s)
David Luethi and Ester Pantaleo
References
Dagpunar, J.S. (1989). An easily implemented generalised inverse Gaussian generator. Commun. Statist. -Simula., 18, 703–710.
Michael, J. R, Schucany, W. R, Haas, R, W. (1976). Generating random variates using transformations with multiple roots, The American Statistican, 30, 88–90.
See Also
Examples
Egig(lambda = 10, chi = 1, psi = 1, func = "x")
Egig(lambda = 10, chi = 1, psi = 1, func = "var")
Egig(lambda = 10, chi = 1, psi = 1, func = "1/x")
Best Fit in Robust Logistic Linear Quantile Regression
Description
It performs the logistic transformation in Galarza et.al.(2020) (see references) for estimating quantiles for a bounded response. Once the response is transformed, it uses the best.lqr
function.
Usage
Log.best.lqr(formula,data = NULL,subset = NULL,
p=0.5,a=0,b=1,
epsilon = 0.001,precision = 10^-6,
criterion = "AIC")
Arguments
We will detail first the only three arguments that differ from best.lqr
function.
a |
lower bound for the response (default = 0) |
b |
upper bound for the response (default = 1) |
epsilon |
a small quantity |
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment (or object coercible by |
subset |
an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in |
p |
An unique quantile or a set of quantiles related to the quantile regression. |
precision |
The convergence maximum error permitted. By default is 10^-6. |
criterion |
Likelihood-based criterion to be used for choosen the best model. It could be |
Details
We follow the transformation in Bottai et.al. (2009) defined as
h(y)=logit(y)=log(\frac{y-a}{b-y})
that implies
Q_{y}(p)=\frac{b\,exp(X\beta) + a}{1 + exp(X\beta)}
where Q_{y}(p)
represents the conditional quantile of the response. Once estimates for the regression coefficients \beta_p
are obtained, inference on Q_{y}(p)
can then be made through the inverse transform above. This equation (as function) is provided in the output. See example.
The interpretation of the regression coefficients is analogous to the interpretation of the coefficients of a logistic regression for binary outcomes.
For example, let x_1
be the gender (male = 0, female=1). Then exp(\beta_{0.5,1})
represents the odds ratio of median score in males vs females, where the odds are
defined using the score instead of a probability, (y-a)/(b-y)
. When the covariate is continous, the respective \beta
coeficient can be interpretated as the increment (or decrement) over the log(odd ratio) when the covariate increases one unit.
Value
For the best model:
iter |
number of iterations. |
criteria |
attained criteria value. |
beta |
fixed effects estimates. |
sigma |
scale parameter estimate for the error term. |
nu |
Estimate of |
gamma |
Estimate of |
SE |
Standard Error estimates. |
table |
Table containing the inference for the fixed effects parameters. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
HQ |
Hannan-Quinn information criterion. |
fitted.values |
vector containing the fitted values. |
residuals |
vector containing the residuals. |
Note
When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown. Also, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C.M., Zhang P. and Lachos, V.H. (2020). Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions. Sankhya B: The Indian Journal of Statistics. doi:10.1007/s13571-020-00231-0
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
See Also
Examples
##Load the data
data(resistance)
attach(resistance)
#EXAMPLE 1.1
#Comparing the resistence to death of two types of tumor-cells.
#The response is a score in [0,4].
boxplot(score~type)
#Median logistic quantile regression (Best fit distribution)
res = Log.best.lqr(formula = score~type,data = resistance,a=0,b=4)
# The odds ratio of median score in type B vs type A
exp(res$beta[2])
#Proving that exp(res$beta[2]) is approx median odd ratio
medA = median(score[type=="A"])
medB = median(score[type=="B"])
rateA = (medA - 0)/(4 - medA)
rateB = (medB - 0)/(4 - medB)
odd = rateB/rateA
round(c(exp(res$beta[2]),odd),3) #best fit
#EXAMPLE 1.2
############
#Comparing the resistence to death depending of dose.
#descriptive
plot(dose,score,ylim=c(0,4),col="dark gray");abline(h=c(0,4),lty=2)
dosecat<-cut(dose, 6, ordered = TRUE)
boxplot(score~dosecat,ylim=c(0,4))
abline(h=c(0,4),lty=2)
#(Non logistic) Best quantile regression for quantiles
# 0.05, 0.50 and 0.95
p05 = best.lqr(score~poly(dose,3),data = resistance,p = 0.05)
p50 = best.lqr(score~poly(dose,3),data = resistance,p = 0.50)
p95 = best.lqr(score~poly(dose,3),data = resistance,p = 0.95)
res3 = list(p05,p50,p95)
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), p05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), p50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), p95$fitted.values[order(dose)], col='red', type='l')
#Using logistic quantile regression for obtaining predictions inside bounds
logp05 = Log.best.lqr(score~poly(dose,3),data = resistance,p = 0.05,b = 4) #a = 0 by default
logp50 = Log.best.lqr(score~poly(dose,3),data = resistance,p = 0.50,b = 4)
logp95 = Log.best.lqr(score~poly(dose,3),data = resistance,p = 0.95,b = 4)
res4 = list(logp05,logp50,logp95)
#No more prediction curves out-of-bounds
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), logp05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), logp50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), logp95$fitted.values[order(dose)], col='red', type='l')
Robust Logistic Linear Quantile Regression
Description
It performs the logistic transformation in Galarza et.al.(2020) (see references) for estimating quantiles for a bounded response. Once the response is transformed, it uses the lqr
function.
Usage
Log.lqr(formula,data = NULL,subset = NULL,
p=0.5,a=0,b=1,
dist = "normal",
nu=NULL,
gamma=NULL,
precision = 10^-6,
epsilon = 0.001,
CI=0.95,
silent = FALSE)
Arguments
We will detail first the only three arguments that differ from lqr
function.
a |
lower bound for the response (default = 0) |
b |
upper bound for the response (default = 1) |
epsilon |
a small quantity |
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment (or object coercible by |
subset |
an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in |
p |
An unique quantile or a set of quantiles related to the quantile regression. |
dist |
represents the distribution to be used for the error term. The values are |
nu |
It represents the degrees of freedom when |
gamma |
It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE. |
precision |
The convergence maximum error permitted. By default is 10^-6. |
CI |
Confidence to be used for the Confidence Interval when a grid of quantiles is provided. Default = 0.95. |
silent |
if |
Details
We follow the transformation in Bottai et.al. (2009) defined as
h(y)=logit(y)=log(\frac{y-a}{b-y})
that implies
Q_{y}(p)=\frac{b\,exp(X\beta) + a}{1 + exp(X\beta)}
where Q_{y}(p)
represents the conditional quantile of the response. Once estimates for the regression coefficients \beta_p
are obtained, inference on Q_{y}(p)
can then be made through the inverse transform above. This equation (as function) is provided in the output. See example.
The interpretation of the regression coefficients is analogous to the interpretation of the coefficients of a logistic regression for binary outcomes.
For example, let x_1
be the gender (male = 0, female=1). Then exp(\beta_{0.5,1})
represents the odds ratio of median score in males vs females, where the odds are defined using the score instead of a probability, (y-a)/(b-y)
. When the covariate is continous, the respective \beta
coeficient can be interpretated as the increment (or decrement) over the log(odd ratio) when the covariate increases one unit.
Value
iter |
number of iterations. |
criteria |
attained criteria value. |
beta |
fixed effects estimates. |
sigma |
scale parameter estimate for the error term. |
nu |
Estimate of |
gamma |
Estimate of |
SE |
Standard Error estimates. |
table |
Table containing the inference for the fixed effects parameters. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
HQ |
Hannan-Quinn information criterion. |
fitted.values |
vector containing the fitted values. |
residuals |
vector containing the residuals. |
Note
When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown. Also, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C.M., Zhang P. and Lachos, V.H. (2020). Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions. Sankhya B: The Indian Journal of Statistics. doi:10.1007/s13571-020-00231-0
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
See Also
Examples
##Load the data
data(resistance)
attach(resistance)
#EXAMPLE 1.1
#Comparing the resistence to death of two types of tumor-cells.
#The response is a score in [0,4].
boxplot(score~type,ylab="score",xlab="type")
#Student't median logistic quantile regression
res = Log.lqr(score~type,data = resistance,a=0,b=4,dist="t")
# The odds ratio of median score in type B vs type A
exp(res$beta[2])
#Proving that exp(res$beta[2]) is approx median odd ratio
medA = median(score[type=="A"])
medB = median(score[type=="B"])
rateA = (medA - 0)/(4 - medA)
rateB = (medB - 0)/(4 - medB)
odd = rateB/rateA
round(c(exp(res$beta[2]),odd),3)
#EXAMPLE 1.2
############
#Comparing the resistence to death depending of dose.
#descriptive
plot(dose,score,ylim=c(0,4),col="dark gray");abline(h=c(0,4),lty=2)
dosecat<-cut(dose, 6, ordered = TRUE)
boxplot(score~dosecat,ylim=c(0,4))
abline(h=c(0,4),lty=2)
#(Non logistic) Best quantile regression for quantiles
# 0.05, 0.50 and 0.95
p05 = best.lqr(score~poly(dose,3),data = resistance,p = 0.05)
p50 = best.lqr(score~poly(dose,3),data = resistance,p = 0.50)
p95 = best.lqr(score~poly(dose,3),data = resistance,p = 0.95)
res3 = list(p05,p50,p95)
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), p05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), p50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), p95$fitted.values[order(dose)], col='red', type='l')
#Using Student's t logistic quantile regression for obtaining preditypeBions inside bounds
logp05 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.05,b = 4,dist = "t") #a = 0 by default
logp50 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.50,b = 4,dist = "t")
logp95 = Log.lqr(score~poly(dose,3),data = resistance,p = 0.95,b = 4,dist = "t")
res4 = list(logp05,logp50,logp95)
#No more predited curves out-of-bounds
plot(dose,score,ylim=c(-1,5),col="gray");abline(h=c(0,4),lty=2)
lines(sort(dose), logp05$fitted.values[order(dose)], col='red', type='l')
lines(sort(dose), logp50$fitted.values[order(dose)], col='blue', type='l')
lines(sort(dose), logp95$fitted.values[order(dose)], col='red', type='l')
#EXAMPLE 1.3
############
#A full model using dose and type for a grid of quantiles
res5 = Log.lqr(formula = score ~ poly(dose,3)*type,data = resistance,
a = 0,b = 4,
p = seq(from = 0.05,to = 0.95,by = 0.05),dist = "t",
silent = TRUE)
#A nice plot
if(TRUE){
par(mfrow=c(1,2))
typeB = (resistance$type == "B")
plot(dose,score,
ylim=c(0,4),
col=c(8*typeB + 1*!typeB),main="Type A")
abline(h=c(0,4),lty=2)
lines(sort(dose[!typeB]),
res5[[2]]$fitted.values[!typeB][order(dose[!typeB])],
col='red')
lines(sort(dose[!typeB]),
res5[[5]]$fitted.values[!typeB][order(dose[!typeB])],
col='green')
lines(sort(dose[!typeB]),
res5[[10]]$fitted.values[!typeB][order(dose[!typeB])],
col='blue',lwd=2)
lines(sort(dose[!typeB]),
res5[[15]]$fitted.values[!typeB][order(dose[!typeB])],
col='green')
lines(sort(dose[!typeB]),
res5[[18]]$fitted.values[!typeB][order(dose[!typeB])],
col='red')
plot(dose,score,
ylim=c(0,4),
col=c(1*typeB + 8*!typeB),main="Type B")
abline(h=c(0,4),lty=2)
lines(sort(dose[typeB]),
res5[[2]]$fitted.values[typeB][order(dose[typeB])],
col='red')
lines(sort(dose[typeB]),
res5[[5]]$fitted.values[typeB][order(dose[typeB])],
col='green')
lines(sort(dose[typeB]),
res5[[10]]$fitted.values[typeB][order(dose[typeB])],
col='blue',lwd=2)
lines(sort(dose[typeB]),
res5[[15]]$fitted.values[typeB][order(dose[typeB])],
col='green')
lines(sort(dose[typeB]),
res5[[18]]$fitted.values[typeB][order(dose[typeB])],
col='red')
}
Skew Family Distributions
Description
Density, distribution function, quantile function and random generation for a Skew Family Distribution useful for quantile regression. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution, all with location parameter equal to mu
, scale parameter sigma
and skewness parameter p
.
Usage
dSKD(y, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "")
pSKD(q, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "",
lower.tail = TRUE)
qSKD(prob, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "",
lower.tail = TRUE)
rSKD(n, mu = 0, sigma = 1, p = 0.5, dist = "normal", nu = "", gamma = "")
Arguments
y , q |
vector of quantiles. |
prob |
vector of probabilities. |
n |
number of observations. |
mu |
location parameter. |
sigma |
scale parameter. |
p |
skewness parameter. |
dist |
represents the distribution to be used for the error term. The values are |
nu |
It represents the degrees of freedom when |
gamma |
It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE. |
lower.tail |
logical; if TRUE (default), probabilities are P[X |
Details
If mu
, sigma
, p
or dist
are not specified they assume the default values of 0, 1, 0.5 and normal
, respectively, belonging to the Symmetric Standard Normal Distribution denoted by SKN(0,1,0.5)
.
The scale parameter sigma
must be positive and non zero. The skew parameter p
must be between zero and one (0<p
<1).
This family of distributions generalize the skew distributions in Wichitaksorn et.al. (2014) as an scale mixture of skew normal distribution. Also the Three-Parameter Asymmetric Laplace Distribution defined in Koenker and Machado (1999) is a special case.
Value
dSKD
gives the density, pSKD
gives the distribution function, qSKD
gives the quantile function, and rSKD
generates a random sample.
The length of the result is determined by n for rSKD
, and is the maximum of the lengths of the numerical arguments for the other functions dSKD
, pSKD
and qSKD
.
Note
The numerical arguments other than n
are recycled to the length of the result.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
Wichitaksorn, N., Choy, S. T., & Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42(4), 579-596.
See Also
Examples
## Let's plot (Normal Vs. Student-t's with 4 df)
##Density
sseq = seq(15,65,length.out = 1000)
dens = dSKD(y=sseq,mu=50,sigma=3,p=0.75)
plot(sseq,dens,type="l",lwd=2,col="red",xlab="x",ylab="f(x)", main="Normal Vs. t(4) densities")
dens2 = dSKD(y=sseq,mu=50,sigma=3,p=0.75,dist="t",nu=4)
lines(sseq,dens2,type="l",lwd=2,col="blue",lty=2)
## Distribution Function
df = pSKD(q=sseq,mu=50,sigma=3,p=0.75,dist = "laplace")
plot(sseq,df,type="l",lwd=2,col="blue",xlab="x",ylab="F(x)", main="Laplace Distribution function")
abline(h=1,lty=2)
##Inverse Distribution Function
prob = seq(0.001,0.999,length.out = 1000)
idf = qSKD(prob=prob,mu=50,sigma=3,p=0.25,dist="cont",nu=0.3,gamma=0.1) # 1 min appox
plot(prob,idf,type="l",lwd=2,col="gray30",xlab="x",ylab=expression(F^{-1}~(x)))
title(main="Skew Cont. Normal Inverse Distribution function")
abline(v=c(0,1),lty=2)
#Random Sample Histogram
sample = rSKD(n=20000,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
seqq2 = seq(25,100,length.out = 1000)
dens3 = dSKD(y=seqq2,mu=50,sigma=3,p=0.2,dist="slash",nu=3)
hist(sample,breaks = 70,freq = FALSE,ylim=c(0,1.05*max(dens3,na.rm = TRUE)),main="")
title(main="Histogram and True density")
lines(seqq2,dens3,col="blue",lwd=2)
Australian institute of sport data
Description
Data on 102 male and 100 female athletes collected at the Australian Institute of Sport.
Format
This data frame contains the following columns:
- Sex
-
(0 = male or 1 = female)
- Ht
-
height (cm)
- Wt
-
weight (kg)
- LBM
-
lean body mass
- RCC
-
red cell count
- WCC
-
white cell count
- Hc
-
Hematocrit
- Hg
-
Hemoglobin
- Ferr
-
plasma ferritin concentration
- BMI
-
body mass index, weight/(height)**2
- SSF
-
sum of skin folds
- Bfat
-
Percent body fat
- Label
-
Case Labels
- Sport
-
Sport
References
S. Weisberg (2005). Applied Linear Regression, 3rd edition. New York: Wiley, Section 6.4
Best Fit in Robust Linear Quantile Regression
Description
It finds the best fit distribution in robust linear quantile regression model. It adjusts the Normal, Student's t, Laplace, Slash and Contaminated Normal models. It shows a summary table with the likelihood-based criterion, envelopes plots and the histogram of the residuals with fitted densities for all models. Estimates and full inference are provided for the best model.
Usage
best.lqr(formula,data = NULL,subset = NULL,
p = 0.5, precision = 10^-6,
criterion = "AIC")
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment (or object coercible by |
subset |
an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in |
p |
An unique quantile or a set of quantiles related to the quantile regression. |
precision |
The convergence maximum error permitted. By default is 10^-6. |
criterion |
Likelihood-based criterion to be used for choosen the best model. It could be |
Details
The best.fit()
function finds the best model only for one quantile. For fitting a grid of quantiles lqr()
might be used but the distribution must be provided.
Value
For the best model:
iter |
number of iterations. |
criteria |
attained criteria value. |
beta |
fixed effects estimates. |
sigma |
scale parameter estimate for the error term. |
nu |
Estimate of |
gamma |
Estimate of |
SE |
Standard Error estimates. |
table |
Table containing the inference for the fixed effects parameters. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
HQ |
Hannan-Quinn information criterion. |
fitted.values |
vector containing the fitted values. |
residuals |
vector containing the residuals. |
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
Wichitaksorn, N., Choy, S. T., & Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42(4), 579-596.
See Also
Examples
data(crabs,package = "MASS")
#Finding the best model for the 3rd quartile based on BIC
best.lqr(BD~FL,data = crabs, p = 0.75, criterion = "BIC")
Skew-t quantile regression for censored and missing data
Description
It fits a linear quantile regression model where the error term is considered to follow an SKT skew-t distribution, that is, the one proposed by Wichitaksorn et.al. (2014). Additionally, the model is capable to deal with missing and interval-censored data at the same time. Degrees of freedom can be either estimated or supplied by the user. It offers estimates and full inference. It also provides envelopes plots and likelihood-based criteria for assessing the fit, as well as fitted and imputed values.
Usage
cens.lqr(y,x,cc,LL,UL,p=0.5,nu=NULL,precision=1e-06,envelope=FALSE)
Arguments
y |
the response vector of dimension |
x |
design matrix for the fixed effects of dimension |
cc |
vector of censoring/missing indicators. For each observation it takes 0 if non-censored/missing, 1 if censored/missing. |
LL |
the vector of lower limits of dimension |
UL |
the vector of upper limits of dimension |
p |
An unique quantile of interest to fit the quantile regression. |
nu |
It represents the degrees of freedom of the skew-t distribution. When is not provided, we use the MLE. |
precision |
The convergence maximum error permitted. By default is 10^-6. |
envelope |
if |
Details
Missing or censored values in the response can be represented imputed as NaN
s, since the algorithm only uses the information provided in the lower and upper limits LL and UL. The indicator vector cc
must take the value of 1 for these observations.
*Censored and missing data*
If all lower limits are -Inf
, we will be dealing with left-censored data.
Besides, if all upper limits are Inf
, this is the case of right-censored data. Interval-censoring is considered when both limits are finites. If some observation is missing, we have not information at all, so both limits must be infinites.
Combinations of all cases above are permitted, that is, we may have left-censored, right-censored, interval-censored and missing data at the same time.
Value
iter |
number of iterations. |
criteria |
attained criteria value. |
beta |
fixed effects estimates. |
sigma |
scale parameter estimate for the error term. |
nu |
Estimate of |
SE |
Standard Error estimates. |
table |
Table containing the inference for the fixed effects parameters. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
HQ |
Hannan-Quinn information criterion. |
fitted.values |
vector containing the fitted values. |
imputed.values |
vector containing the imputed values for censored/missing observations. |
residuals |
vector containing the residuals. |
Author(s)
Christian E. Galarza <chedgala@espol.edu.ec>, Marcelo Bourguignon <m.p.bourguignon@gmail.com> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <chedgala@espol.edu.ec>
References
Galarza, C., Lachos, V. H. & Bourguignon M. (2021). A skew-t quantile regression for censored and missing data. Stat.doi:10.1002/sta4.379.
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
Wichitaksorn, N., Choy, S. B., & Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42(4), 579-596.
See Also
lqr
,best.lqr
,Log.lqr
,
Log.best.lqr
,dSKD
Examples
##Load the data
data(ais)
attach(ais)
##Setting
y<-BMI
x<-cbind(1,LBM,Sex)
cc = rep(0,length(y))
LL = UL = rep(NA,length(y))
#Generating a 5% of interval-censored values
ind = sample(x = c(0,1),size = length(y),
replace = TRUE,prob = c(0.95,0.05))
ind1 = (ind == 1)
cc[ind1] = 1
LL[ind1] = y[ind1] - 10
UL[ind1] = y[ind1] + 10
y[ind1] = NA #deleting data
#Fitting the model
# A median regression with unknown degrees of freedom
out = cens.lqr(y,x,cc,LL,UL,p=0.5,nu = NULL,precision = 1e-6,envelope = TRUE)
# A first quartile regression with 10 degrees of freedom
out = cens.lqr(y,x,cc,LL,UL,p=0.25,nu = 10,precision = 1e-6,envelope = TRUE)
Truncated Distributions
Description
Density, distribution function, quantile function and random generation for truncated distributions.
Usage
dtrunc(x, spec, a=-Inf, b=Inf, log=FALSE, ...)
extrunc(spec, a=-Inf, b=Inf, ...)
ptrunc(x, spec, a=-Inf, b=Inf, ...)
qtrunc(p, spec, a=-Inf, b=Inf, ...)
rtrunc(n, spec, a=-Inf, b=Inf, ...)
vartrunc(spec, a=-Inf, b=Inf, ...)
Arguments
n |
This is a the number of random draws for |
p |
This is a vector of probabilities. |
x |
This is a vector to be evaluated. |
spec |
The base name of a probability distribution is
specified here. For example, to estimate the density of a
truncated normal distribution, enter |
a |
This is the lower bound of truncation, which defaults to negative infinity. |
b |
This is the upper bound of truncation, which defaults to infinity. |
log |
Logical. If |
... |
Additional arguments to pass. |
Details
A truncated distribution is a conditional distribution that results
from a priori restricting the domain of some other probability
distribution. More than merely preventing values outside of truncated
bounds, a proper truncated distribution integrates to one within the
truncated bounds. In contrast to a truncated distribution, a
censored distribution occurs when the probability distribution is
still allowed outside of a pre-specified range. Here, distributions
are truncated to the interval [a,b]
, such as p(\theta) \in
[a,b]
.
The R code of Nadarajah and Kotz (2006) has been modified to work with log-densities. This code was also available in the (extinct) package LaplacesDemon.
Value
dtrunc
gives the density,
extrunc
gives the expectation,
ptrunc
gives the distribution function,
qtrunc
gives the quantile function,
rtrunc
generates random deviates, and
vartrunc
gives the variance of the truncated distribution.
References
Nadarajah, S. and Kotz, S. (2006). "R Programs for Computing Truncated Distributions". Journal of Statistical Software, 16, Code Snippet 2, p. 1–8.
See Also
Examples
x <- seq(-0.5, 0.5, by = 0.1)
y <- dtrunc(x, "norm", a=-0.5, b=0.5, mean=0, sd=2)
Robust Linear Quantile Regression
Description
It fits a robust linear quantile regression model using a new family of zero-quantile distributions for the error term. This family of distribution includes skewed versions of the Normal, Student's t, Laplace, Slash and Contaminated Normal distribution. It provides estimates and full inference. It also provides envelopes plots for assessing the fit and confidences bands when several quantiles are provided simultaneously.
Usage
lqr(formula,data = NULL,subset = NULL,
p=0.5,dist = "normal",
nu=NULL,gamma=NULL,
precision = 10^-6,envelope=FALSE,
CI=0.95,silent = FALSE
)
#lqr(y~x, data, p = 0.5, dist = "normal")
#lqr(y~x, data, p = 0.5, dist = "t")
#lqr(y~x, data, p = 0.5, dist = "laplace")
#lqr(y~x, data, p = 0.5, dist = "slash")
#lqr(y~x, data, p = 0.5, dist = "cont")
#lqr(y~x, p = c(0.25,0.50,0.75), dist = "normal")
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment (or object coercible by |
subset |
an optional string specifying a subset of observations to be used in the fitting process. Be aware of the use of double quotes in a proper way when necessary, e.g., in |
p |
An unique quantile or a set of quantiles related to the quantile regression. |
dist |
represents the distribution to be used for the error term. The values are |
nu |
It represents the degrees of freedom when |
gamma |
It represents a scale factor for the contaminated normal distribution. When is not provided, we use the MLE. |
precision |
The convergence maximum error permitted. By default is 10^-6. |
envelope |
if |
CI |
Confidence to be used for the Confidence Interval when a grid of quantiles is provided. Default = 0.95. |
silent |
if |
Details
When a grid of quantiles is provided, a graphical summary with point estimates and Confidence Intervals for model parameters is shown.
Value
iter |
number of iterations. |
criteria |
attained criteria value. |
beta |
fixed effects estimates. |
sigma |
scale parameter estimate for the error term. |
nu |
Estimate of |
gamma |
Estimate of |
SE |
Standard Error estimates. |
table |
Table containing the inference for the fixed effects parameters. |
loglik |
Log-likelihood value. |
AIC |
Akaike information criterion. |
BIC |
Bayesian information criterion. |
HQ |
Hannan-Quinn information criterion. |
fitted.values |
vector containing the fitted values. |
residuals |
vector containing the residuals. |
Note
If a grid of quantiles is provided, the result will be a list of the same dimension where each element corresponds to each quantile as detailed above.
Author(s)
Christian E. Galarza <cgalarza88@gmail.com>, Luis Benites <lsanchez@ime.usp.br> and Victor H. Lachos <hlachos@ime.unicamp.br>
Maintainer: Christian E. Galarza <cgalarza88@gmail.com>
References
Galarza, C., Lachos, V. H., Cabral, C. R. B., & Castro, C. L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6(1), 113-130.
Wichitaksorn, N., Choy, S. T., & Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42(4), 579-596.
See Also
cens.lqr
,best.lqr
,Log.lqr
,
Log.best.lqr
,dSKD
Examples
#Example 1
##Load the data
data(ais)
attach(ais)
## Fitting a median regression with Normal errors (by default)
modelF = lqr(BMI~LBM,data = ais,subset = "(Sex==1)")
modelM = lqr(BMI~LBM,data = ais,subset = "(Sex==0)")
plot(LBM,BMI,col=Sex*2+1,
xlab="Lean Body Mass",
ylab="Body4 Mass Index",
main="Quantile Regression")
abline(a = modelF$beta[1],b = modelF$beta[2],lwd=2,col=3)
abline(a = modelM$beta[1],b = modelM$beta[2],lwd=2,col=1)
legend(x = "topleft",legend = c("Male","Female"),lwd = 2,col = c(1,3))
#COMPARING SOME MODELS for median regression
modelN = lqr(BMI~LBM,dist = "normal")
modelT = lqr(BMI~LBM,dist = "t")
modelL = lqr(BMI~LBM,dist = "laplace")
#Comparing AIC criteria
modelN$AIC;modelT$AIC;modelL$AIC
#This could be automatically done using best.lqr()
best.model = best.lqr(BMI~LBM,data = ais,
p = 0.75, #third quartile
criterion = "AIC")
#Let's use a grid of quantiles (no output)
modelfull = lqr(BMI~LBM,data = ais,
p = seq(from = 0.10,to = 0.90,by = 0.05),
dist = "normal",silent = TRUE)
#Plotting quantiles 0.10,0.25,0.50,0.75 and 0.90
if(TRUE){
plot(LBM,BMI,xlab = "Lean Body Mass"
,ylab = "Body Mass Index", main = "Quantile Regression",pch=16)
colvec = c(2,2,3,3,4)
imodel = c(1,17,4,14,9)
for(i in 1:5){
abline(a = modelfull[[imodel[i]]]$beta[1],
b = modelfull[[imodel[i]]]$beta[2],
lwd=2,col=colvec[i])
}
legend(x = "topleft",
legend = rev(c("0.10","0.25","0.50","0.75","0.90")),
lwd = 2,col = c(2,3,4,3,2))
}
#Example 2
##Load the data
data(crabs,package = "MASS")
attach(crabs)
## Fitting a median regression with Normal errors (by default) #Note the double quotes
crabsF = lqr(BD~FL,data = crabs,subset = "(sex=='F')")
crabsM = lqr(BD~FL,data = crabs,subset = "(sex=='M')")
if(TRUE){
plot(FL,BD,col=as.numeric(sex)+1,
xlab="Frontal lobe size",ylab="Body depth",main="Quantile Regression")
abline(a = crabsF$beta[1],b = crabsF$beta[2],lwd=2,col=2)
abline(a = crabsM$beta[1],b = crabsM$beta[2],lwd=2,col=3)
legend(x = "topleft",legend = c("Male","Female"),
lwd = 2,col = c(3,2))
}
#Median regression for different distributions
modelN = lqr(BD~FL,dist = "normal")
modelT = lqr(BD~FL,dist = "t")
modelL = lqr(BD~FL,dist = "laplace")
modelS = lqr(BD~FL,dist = "slash")
modelC = lqr(BD~FL,dist = "cont" )
#Comparing AIC criterias
modelN$AIC;modelT$AIC;modelL$AIC;modelS$AIC;modelC$AIC
# best model based on BIC
best.lqr(BD~FL,criterion = "BIC")
#Let's use a grid of quantiles for the Student's t distribution
modelfull = lqr(BD~FL,data = crabs,
p = seq(from = 0.10,to = 0.90,by = 0.05),
dist = "t") # silent = FALSE
#Plotting quantiles 0.10,0.25,0.50,0.75 and 0.90
if(TRUE){
plot(FL,BD,xlab = "Frontal lobe size"
,ylab = "Body depth", main = "Quantile Regression",pch=16)
colvec = c(2,2,3,3,4)
imodel = c(1,17,4,14,9)
for(i in 1:5){
abline(a = modelfull[[imodel[i]]]$beta[1],
b = modelfull[[imodel[i]]]$beta[2],
lwd=2,col=colvec[i])
}
legend(x = "topleft",
legend = rev(c("0.10","0.25","0.50","0.75","0.90")),
lwd = 2,col = c(2,3,4,3,2))
}
Tumor-cell resistance to death
Description
Artificial dataset. The experiment consists in measure the resistance to death of two types of tumor-cells over different doses of a experimental drug. The data was created considering a null intercept and a cubic polinomial for the dose.
Format
This data frame contains the following columns:
- dose
-
Quantity of dose of an experimental drug.
- type
-
Type of tumor-cell. Type A and B.
- score
-
Bounded response between 0 and 4.
Details
This dataset was generated in order to be fitted with a logistic quantile regression since the response is bounded.