The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
malayrootwords
# A tibble: 4,365 x 2
`Col Word` `Root Word`
<chr> <chr>
1 ad ada
2 ak aku
3 akn akan
4 ank anak
5 ap apa
6 awl awal
7 bg bagi
8 bkn bukan
9 blm belum
10 bnjr banjir
# ... with 4,355 more rows
Word
will be
changed to word
(lowercase)root_word
will be changed to
Root Word
stem_malay(word = "banyaknya", dictionary = malayrootwords)
'Root Word' is now returned instead of 'root_word'
Col Word Root Word1 banyaknya banyak
Another example:
<- data.frame(text = c("banyaknya","sangat","terkedu", "pengetahuan"))
x
stem_malay(word = x,
dictionary = malayrootwords,
col_feature1 = "text")
'Root Word' is now returned instead of 'root_word'
Col Word Root Word1 banyaknya banyak
2 sangat sangat
3 terkedu kedu
4 pengetahuan tahu
malaystopwords# A tibble: 512 x 1
stopwords<chr>
1 ada
2 sampai
3 sana
4 itu
5 sangat
6 saya
7 jadi
8 se
9 agak
10 jangan
# ... with 502 more rows
sentiment_general# A tibble: 1,424 × 2
Word Sentiment<chr> <chr>
1 berjaya Positive
2 baik Positive
3 terkenal Positive
4 membantu Positive
5 mudah Positive
6 popular Positive
7 moden Positive
8 memenangi Positive
9 bebas Positive
10 menarik Positive
# … with 1,414 more rows
normalized# A tibble: 153 × 2
`Col Word` `Normalized Word`
<chr> <chr>
1 ad ada
2 ak aku
3 akn akan
4 ank anak
5 ap apa
6 awl awal
7 bg bagi
8 bkn bukan
9 blm belum
10 bnjr banjir
# … with 143 more rows
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.