The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
filter_datacube()
for filtering datasets in a
datacube by datefind_ID()
and find_common_ID()
for
identifying ID columns in datasetsfind_year()
for extracting just the year from a
date (potentially unnecessary if messydates::year()
available)compare_new()
and compare_diff()
for
comparing what is new or different in one dataset over anotherscore_*()
functions for scoring
datasets on various criteria, including consistency, completeness,
accuracy, timeliness, and uniqueness of the datafind_duplicates()
for identifying duplicate
observations in datasetscode_extend_glove()
and
code_extend_bert()
for extending existing coding to new or
missing datagetID()
helper that obtains the one or two ID
columns that appear as the first one or two columns in a datacubecompare_overlap()
now returns a list of each datasets
IDs to avoid issues with {ggVennDiagram}
plot.compare_overlap()
now always returns an upset plot
(closes #292)plot.compare_categories()
treated identifier
variables (closes #291)resolve_*()
functionsresolve_*()
functions now have a parameter indicating
whether missing values should be included; unlike base R, by default
missing values are excludedresolve_mean()
resolve_median()
resolve_mode()
for retaining the most common
valuesresolve_consensus()
for retaining only values
where there are no conflicts{cli}
,
{dplyr}
, and {messydates}
Depends{usethis}
Suggestemperors
dataset
emperors$Wikipedia
emperors$UNRV
emperors$Britannica
call_citations()
to print citations added as
hidden informationcall_sources()
bug related to calling
help filescall_sources()
and
call_citations()
to accept datacubes or datasets, as
objects or charactersmreport()
from messydates
mreport.list()
to make it easier to report on
datacubesdescribe_data()
for describing key aspects of
datasets in datacubescall_releases()
to use
messydates::vmin()
pluck()
dplyr::pluck()
but adds a citation
promptconsolidate()
{cli}
progress messages and
success alerts{dtplyr}
in place of
dplyr::full_join()
(closes #288)
{duckplyr}
considered: faster, but couldn’t handle
mdate
class{collapse}
considered: even faster, but inconsistent
outputconsolidate()
to use new ‘join’
argument
{cli}
on quiet moderesolve_coalesce()
for coalescing (taking first
non-NA value)resolve_random()
for returning random values
sampling from those availableresolve_min()
and resolve_max()
for returning min or max valuesresolve_unite()
for returning all possible values
as a setresolve_precision()
for returning most precise
values available (closes #265)
precision.numeric()
to return most significant
figuresprecision.character()
to return most
charactersresolve_median()
and
resolve_mean()
as uncommon choicesresolve_multiple()
in favour of always using
more flexible for loopfavour()
in favour of left joins and
coalescescoalesce_rows()
as no longer necessarycall_sources()
to be more flexible when
gathering data from datacube documentationcall_sources()
compare_dimensions()
by fixing bugs related to
dates and NA observationsemperors
data documentation issues related to
lost braces with CRAN submission{ggplot2}
consolidate()
call_sources()
identify
datasets within datacubes{tibble}
and
{janitor}
package imports in DESCRIPTION fileget_packages()
to call_packages()
and updating how the function works and
look up packages, version updates, and availailabitycall_sources()
function
that displays sources and variable changes for datasets in
datacubesretrieve_
family of
functions to call_
functionsplot_releases()
to
call_releases
compare_missing()
function to compare missing values in datasets in a ‘many’ datacubedb_plot()
function to
compare_categories()
and updating variable categoriesdb_
functions to compare_
functionscompare_overlap()
to help users
investigate overlap for datasets within datacubescompare_dimensions()
and
compare_ranges()
to compare dimensions and ranges in
datacubesconsolidate()
to require two keys when joining
memberships’ databasesdb_comp()
to follow consolidation defaults for
memberships’ databasesretrieve_texts()
function to
retrieve treaty texts from other ‘many’ packagesdata_evolution()
to use inherits()
instead of class()
for condition comparisondata_evolution()
function to
the report family of functions that gets original datasets, if
available, or opens the preparation scripts, if not availabledb_plot()
function to plot a
profile of the database to facilitate comparison of matched observations
across datasetsdb_comp()
function that creates a
tibble of the database to facilitate comparison of matched observations
across datasetsget_packages()
function
get_packages()
interactive so
that users can chose which branch to downloadget_packages()
printingget_packages()
and plot_releases()
to use {messydates}
, instead of {lubridate}
,
for dates coercionnetwork_map()
function for
plotting geographical networksconsolidate()
function to make function over 20
times faster
consolidate()
ignore text related
variables due to their sizeconsolidate()
more concise to
avoid running into memory limitscoalesce_compatible()
for a faster approach to coalescing compatible missing observations that
relies on zoo::na.locf()
coalesce_compatible()
function defunct{skimr}
table from emperors
database documentation{pkgdown}
dependencyemperors
data to contain correct date class
name consistent with {messydates}
get_packages()
function identifies
installed packages to avoid using installed.packages()
coalesce_compatible()
function to include the returnsconsolidate()
to use
inherits()
to identify variable’s classconsolidate()
function
consolidate()
function more
concise and faster by removing redundant code lines{messydates}
package is used to resolve datesconsolidate()
substitutes missing
observations with first non-missing observation from other datasetsconsolidate()
detects
variables to be resolved to avoid ambiguous variable matchingconsolidate()
favour()
(also
favor()
) function that re-orders datasets within a
database{qData}
to
{manydata}
consolidate()
consolidate()
function
get_packages()
functionextract_bilaterals()
for extracting adjacency
edgelist for bilateral agreementsextract_multilaterals()
for extracting adjacency
edgelist for multilateral agreementsget_packages()
to load downloaded packagesconsolidate()
interleave()
to qCreateconsolidate()
for collapsing a set
or database of (q)dataset into a single dataset
coalesce_compact()
to coalesce
all compatible rows of a data framecoalesce_compact()
consolidate()
and
coalesce_compact()
coalesce_rows()
coalesce_rows()
{qData}
into two packages,
{qData}
for users and {qCreate}
for developers
setup_package()
and related functions to
{qCreate}
import_data()
and related functions to
{qCreate}
export_data()
and related functions to
{qCreate}
plot_releases()
to {migraph}
data_contrast()
and
data_source()
return exportable objectsget_packages()
function
get_packages()
by changing
dependencies to {lubridate}
NA
where a listed qPackage
is not installed locallysetup_package()
to make it more intuitive and
precise for users
setup_package()
setup_package()
to make more
precisesetup_package()
setup_package()
to be less verbosenew_author()
function to
add_author()
for naming consistency
add_author()
add_author()
to treat multiple
commentssetup_package()
and
add_author()
standardise_dates()
to simplify function and
testing
standardise_dates()
standardise_dates()
report_data()
report_data()
into
data_source()
and data_contrast()
functionsdata_contrast()
data_contrast()
report_data()
functionsetup_package()
to make it easier to set up
collaborative qPackages
setup_package()
accept more than
two authors as argumentssetup_package()
function so
that it adds LICENSE file to new qPackagesnew_author()
function that adds
new package contributors to description fileget_packages()
to make it easier to install
globalgov qPackages
get_packages()
work with
package name only for qPackages part of the globalgov organizationget_packages()
to accept listed
number for package as argumentsdepends()
functiondepends()
for loading and, if necessary,
installing CRAN packagesplot_releases()
function that visualises
historical milestones/releases for GitHub repositoriessetup_package()
function by removing license
lines in the codes
setup_package()
import_data()
to accept .RData filesstandardise_dates()
function and tests
standardise_dates()
function by using
lubridate::as_date()
in place of
anytime::anydate()
to correctly treat historical BC and AD
datesstandardise_dates()
to make
sure it works with all types of date variablesstandardise_dates()
into various helper functionsexport_data()
to better document new database
and dataset structure
export_data()
references the
newly created report_data()
function to generate metadata
dataframes at the desired level (Package, Database, Dataset)export_data()
export_data()
to document
datasets at the database levelexport_data()
retain()
to retain chosen objects in the
environment, removing all other variablesreport_data()
function that
displays information on the data within a qPackageexport_data()
specificitiesuse_ccby_license(name = packageAuthor)
in the description
of the setup_package()
functionexport_data()
function
to its new version including database name as a stringimport_data()
by suggesting upper case letters
for dataset names and lower case letters for database names
stadardise_dates()
so that
extreme future dates are standardised
standardise_dates()
to accept multiple variable
dates as inputs and it standardises separatorsstandardise_dates()
to be more efficient when
dealing with different date formatsrecent()
in favour of
standardise_dates()
export_data()
by making it save datasets as
named list elements in a databaseget_packages()
function to:
setup_package()
and
import_data()
setup_package()
standardise_dates()
rearrange()
function in
favour of dplyr::relocate()
export_data()
function
get_packages()
function
which displays other packages, and some information about these
packages, in the qData ecosystem. The function serves as a wrapper for
downloading qPackages from GitHub.create_qPackage()
to
setup_package()
qPackage-DESC
templateqPackage-DESC
that names weren’t
stringsuse_qData_raw()
to import_data()
use_qData()
to export_data()
usethis::use_data()
qData-doc.R
)qtemplate()
function for finding
and rendering templatescreate_qPackage()
that establishes
a {qData}
consistent package framework
use_qData_raw()
for setting up
data cleaning and wrangling
repaint()
for filling in missing
data by lookuprecent()
for sensible centuries for datesuse_qData()
for setting up tests,
documentation, and lazy-loading of cleaned data
create_qpackage()
interleave()
resequence()
recollect()
{lintr}
,
{goodpractice}
, and {spelling}
in
prchecks.ymlrearrange()
reunite()
NEWS.md
file to track changes to the
package.transmutate()
for merging variablesentitle()
for standardising treaty titles,
etc.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.