The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
matrixCorr computes correlation and related association
matrices from small to high-dimensional data using simple, consistent
functions and sensible defaults. It includes shrinkage and robust
options for noisy or p ≥ n settings, plus convenient
print/plot methods. Performance-critical paths are implemented in C++
with BLAS/OpenMP and memory-aware symmetric updates. The API accepts
base matrices and data frames and returns standard R objects via a
consistent S3 interface.
Supported measures include Pearson, Spearman, Kendall, distance correlation, partial correlation, and robust biweight mid-correlation; agreement tools cover Bland–Altman (two-method and repeated-measures) and Lin’s concordance correlation coefficient (including repeated-measures LMM/REML extensions).
Rcpppearson_corr(),
spearman_rho(), kendall_tau()biweight_mid_corr())distance_corr())partial_correlation())schafer_corr())bland_altman() and
repeated-measures bland_altman_repeated()),ccc(), repeated-measures LMM/REML
ccc_lmm_reml() and non-parametric
ccc_pairwise_u_stat())# Install from GitHub
# install.packages("devtools")
devtools::install_github("Prof-ThiagoOliveira/matrixCorr")library(matrixCorr)
set.seed(1)
X <- as.data.frame(matrix(rnorm(300 * 6), ncol = 6))
names(X) <- paste0("V", 1:6)
R_pear <- pearson_corr(X)
R_spr <- spearman_rho(X)
R_ken <- kendall_tau(X)
print(R_pear, digits = 2)
plot(R_spr) # heatmapset.seed(2)
Y <- X
# inject outliers
Y$V1[sample.int(nrow(Y), 8)] <- Y$V1[sample.int(nrow(Y), 8)] + 8
R_bicor <- biweight_mid_corr(Y)
print(R_bicor, digits = 2)set.seed(3)
n <- 60; p <- 200
Xd <- matrix(rnorm(n * p), n, p)
colnames(Xd) <- paste0("G", seq_len(p))
R_shr <- schafer_corr(Xd)
print(R_shr, digits = 2, max_rows = 6, max_cols = 6)R_part <- partial_correlation(X)
print(R_part, digits = 2)R_dcor <- distance_corr(X)
print(R_dcor, digits = 2)set.seed(4)
x <- rnorm(120, 100, 10)
y <- x + 0.5 + rnorm(120, 0, 8)
ba <- bland_altman(x, y)
print(ba)
plot(ba)set.seed(5)
S <- 20; Tm <- 6
subj <- rep(seq_len(S), each = Tm)
time <- rep(seq_len(Tm), times = S)
true <- rnorm(S, 50, 6)[subj] + (time - mean(time)) * 0.4
mA <- true + rnorm(length(true), 0, 2)
mB <- true + 1.0 + rnorm(length(true), 0, 2.2)
mC <- 0.95 * true + rnorm(length(true), 0, 2.5)
dat <- rbind(
data.frame(y = mA, subject = subj, method = "A", time = time),
data.frame(y = mB, subject = subj, method = "B", time = time),
data.frame(y = mC, subject = subj, method = "C", time = time)
)
dat$method <- factor(dat$method, levels = c("A","B","C"))
ba_rep <- bland_altman_repeated(
data = dat, response = "y", subject = "subject",
method = "method", time = "time",
include_slope = FALSE, use_ar1 = FALSE
)
summary(ba_rep)
# plot(ba_rep) # faceted BA scatter by pairset.seed(6)
S <- 30; Tm <- 8
id <- factor(rep(seq_len(S), each = 2 * Tm))
method <- factor(rep(rep(c("A","B"), each = Tm), times = S))
time <- rep(rep(seq_len(Tm), times = 2), times = S)
u <- rnorm(S, 0, 0.8)[as.integer(id)]
g <- rnorm(S * Tm, 0, 0.5)
g <- g[ (as.integer(id) - 1L) * Tm + as.integer(time) ]
y <- (method == "B") * 0.3 + u + g + rnorm(length(id), 0, 0.7)
dat_ccc <- data.frame(y, id, method, time)
fit_ccc <- ccc_lmm_reml(dat_ccc, response = "y", rind = "id",
method = "method", time = "time")
summary(fit_ccc) # overall CCC, variance components, SEs/CIIssues and pull requests are welcome. Please see
CONTRIBUTING.md for guidelines and
cran-comments.md/DESCRIPTION for package
metadata.
See inst/LICENSE for the full MIT license text.
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.