The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
bound = TRUE rhat() now also returns
rhat values for separate analyses.bound = TRUE and as_df = TRUE
rhat() now returns a data.frame with the rhat values for
the separate and combined analyses.fill_na() for mcarray,
mcmcarray and mcmcr.as.mcmcarray.mcmc() (and
as.mcmcr.mcmc()) so now returns an mcmcarray
(and mcmcr) object with no terms.tidy.mcmcr().simplify = FALSE argument to coef() and
tidy() and soft-deprecated if not TRUE.... optional arguments for fun = median
argument to estimates().as_nlists.mcmc.list() to nlist package.as_mcmc_list.mcmr().nlist
as_nlist.mcmc() and
as_nlist.mcmc.list()as_nlists.mcmc()as.term.mcmc() and
as.term.mcmc.list()bind_iterations.mcmc() and
bind_iterations.mcmc.list()collapse_chains.default() and
collapse_chains.mcmc.list()npdims.mcmc.list() to return character vector (as
opposed to list)collapse_chains.mcmc.list() to return an mcmc.list
object with one chain (as opposed to an mcmc object)estimates() from object
to x.scalar_only = FALSE argument of pars() to
scalar = NA.estimates() so now checks fun returns scalar
numeric.pvalue() for extras::pvalue().zero() for fill_all().check_mcmcarray() and check_mcmcr() for
chk_mcmcarray() and chk_mcmcr().iterations argument with iters in
subset().parameters argument with pars in
subset().vld_() and chk_() functions for mcmcarray
and mcmcr objects.scalar = NULL argument to pars() and
npars().na_rm = NA argument to esr() and
rhat().as_df = FALSE arg to esr() for
mcarray, mcmc and mcmc.list.nchains(),
niters(), collapse_chains() and
split_chains() etc to universals package.check_mcmcr() and
check_mcmcarray().converged().as.mcmc.mcmc.list(), thin.mcmc()
and thin.mcmc.list() as now defined by coda.as.mcmc.list.mcarray() as clashes with
rjags version.mcmc_aperm() function to transpose parameter
dimensions.npdims() function to get number of parameter
dimensions.by = TRUE argument to mcmc_map()
function.rhat() now returns minimum of 1.subset() and parameters() for
mcmcrs object.bound = FALSE argument to
rhat.mcmcrs() and converged.mcmcrs()
functions.error() with
err::err().These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.