The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
bound = TRUE
rhat()
now also returns
rhat values for separate analyses.bound = TRUE
and as_df = TRUE
rhat()
now returns a data.frame with the rhat values for
the separate and combined analyses.fill_na()
for mcarray
,
mcmcarray
and mcmcr
.as.mcmcarray.mcmc()
(and
as.mcmcr.mcmc()
) so now returns an mcmcarray
(and mcmcr
) object with no terms.tidy.mcmcr()
.simplify = FALSE
argument to coef()
and
tidy()
and soft-deprecated if not TRUE
....
optional arguments for fun = median
argument to estimates()
.as_nlists.mcmc.list()
to nlist package.as_mcmc_list.mcmr()
.nlist
as_nlist.mcmc()
and
as_nlist.mcmc.list()
as_nlists.mcmc()
as.term.mcmc()
and
as.term.mcmc.list()
bind_iterations.mcmc()
and
bind_iterations.mcmc.list()
collapse_chains.default()
and
collapse_chains.mcmc.list()
npdims.mcmc.list()
to return character vector (as
opposed to list)collapse_chains.mcmc.list()
to return an mcmc.list
object with one chain (as opposed to an mcmc object)estimates()
from object
to x
.scalar_only = FALSE
argument of pars()
to
scalar = NA
.estimates()
so now checks fun returns scalar
numeric.pvalue()
for extras::pvalue()
.zero()
for fill_all()
.check_mcmcarray()
and check_mcmcr()
for
chk_mcmcarray()
and chk_mcmcr()
.iterations
argument with iters
in
subset()
.parameters
argument with pars
in
subset()
.vld_()
and chk_()
functions for mcmcarray
and mcmcr objects.scalar = NULL
argument to pars()
and
npars()
.na_rm = NA
argument to esr()
and
rhat()
.as_df = FALSE
arg to esr()
for
mcarray, mcmc and mcmc.list.nchains()
,
niters()
, collapse_chains()
and
split_chains()
etc to universals package.check_mcmcr()
and
check_mcmcarray()
.converged()
.as.mcmc.mcmc.list()
, thin.mcmc()
and thin.mcmc.list()
as now defined by coda.as.mcmc.list.mcarray()
as clashes with
rjags version.mcmc_aperm()
function to transpose parameter
dimensions.npdims()
function to get number of parameter
dimensions.by = TRUE
argument to mcmc_map()
function.rhat()
now returns minimum of 1.subset()
and parameters()
for
mcmcrs object.bound = FALSE
argument to
rhat.mcmcrs()
and converged.mcmcrs()
functions.error()
with
err::err()
.These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.