The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
The temperature of the environment where a species lives (and their
body mass) can have a large impact on their metabolism and in
consequence also on different processes such as growth, reproduction and
mortality. To include this effect, metaRange
offers the
option to use metabolic scaling based on the “metabolic theory of
ecology” described by Brown et al. (2004) [Ref: 1] in the following
form: \[{parameter = normalization\_constant
\cdot mass^{scaling\_exponent} \cdot e^{\frac{E}{k \cdot
temperature}}}\] This is implemented in the function
metabolic_scaling()
, which can be used to calculate the
parameter value for any metabolically influenced process, based on the
mean individual body mass of a population, a process specific constant
and the temperature of the environment. It has to be noted that
different processes have different activation energy values and scaling
exponents.
Parameter | Scaling exponent | Activation energy |
---|---|---|
resource usage | 3/4 | -0.65 |
reproduction, mortality | -1/4 | -0.65 |
carrying capacity | -3/4 | 0.65 |
Table 1: Common parameter and their associated scaling exponents and activation energies. Source: table 4 in Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012) [Ref: 2]
In the absence of experimentally measured values for the
normalization constant, metaRange
offers the function
calculate_normalization_constant()
to calculate the
normalization constant based on an estimated value for the parameter
under a reference temperature.
library(metaRange)
library(terra)
set_verbosity(0)
raster_file <- system.file("ex/elev.tif", package = "terra")
r <- rast(raster_file)
temperature <- scale(r, center = FALSE, scale = TRUE) * 10 + 273.15
precipitation <- r * 2
temperature <- rep(temperature, 10)
precipitation <- rep(precipitation, 10)
landscape <- sds(temperature, precipitation)
names(landscape) <- c("temperature", "precipitation")
sim <- create_simulation(landscape)
sim$add_species(name = "species_1")
Define some basic traits.
sim$add_traits(
species = "species_1",
population_level = FALSE,
temperature_maximum = 300,
temperature_optimum = 288,
temperature_minimum = 280
)
Add the parameter used in the metabolic scaling as global variables, since they are not species specific.
sim$add_globals(
"E_reproduction_rate" = -0.65,
"E_carrying_capacity" = 0.65,
"exponent_reproduction_rate" = -1 / 4,
"exponent_carrying_capacity" = -3 / 4,
"k" = 8.617333e-05
)
Add traits that are used in the reproduction model including an estimate of the reproduction rate and the carrying capacity.
sim$add_traits(
species = "species_1",
population_level = TRUE,
"abundance" = 100,
"reproduction_rate" = 0.5,
"carrying_capacity" = 1000,
"mass" = 1
)
Calculate the normalization constant, based on the parameter estimate and the optimal temperature of the species. Note that this could also be done in a loop over multiple species.
sim$add_traits(
species = "species_1",
population_level = FALSE,
"reproduction_rate_mte_constant" = calculate_normalization_constant(
parameter_value = sim$species_1$traits[["reproduction_rate"]][[1]],
scaling_exponent = sim$globals[["exponent_reproduction_rate"]],
mass = sim$species_1$traits[["mass"]][[1]],
reference_temperature = sim$species_1$traits[["temperature_optimum"]],
E = sim$globals[["E_reproduction_rate"]],
k = sim$globals[["k"]]
),
"carrying_capacity_mte_constant" = calculate_normalization_constant(
parameter_value = sim$species_1$traits[["carrying_capacity"]][[1]],
scaling_exponent = sim$globals[["exponent_carrying_capacity"]],
mass = sim$species_1$traits[["mass"]][[1]],
reference_temperature = sim$species_1$traits[["temperature_optimum"]],
E = sim$globals[["E_carrying_capacity"]],
k = sim$globals[["k"]]
)
)
Add a process that does the metabolic scaling in each time step.
sim$add_process(
species = "species_1",
process_name = "mte",
process_fun = function() {
self$traits[["reproduction_rate"]] <- metabolic_scaling(
normalization_constant = self$traits[["reproduction_rate_mte_constant"]],
scaling_exponent = self$sim$globals[["exponent_reproduction_rate"]],
mass = self$traits[["mass"]],
temperature = self$sim$environment$current[["temperature"]],
E = self$sim$globals[["E_reproduction_rate"]],
k = self$sim$globals[["k"]]
)
self$traits[["carrying_capacity"]] <- metabolic_scaling(
normalization_constant = self$traits[["carrying_capacity_mte_constant"]],
scaling_exponent = self$sim$globals[["exponent_carrying_capacity"]],
mass = self$traits[["mass"]],
temperature = self$sim$environment$current[["temperature"]],
E = self$sim$globals[["E_carrying_capacity"]],
k = self$sim$globals[["k"]]
)
},
execution_priority = 2
)
After this point, more processes could be added that use the scaled parameters (See previous articles / vignettes). Here we just plot the scaled parameter instead.
sim$set_time_layer_mapping(c(1, 2))
sim$begin()
plot_cols <- hcl.colors(100, "Purple-Yellow", rev = TRUE)
plot(sim, "species_1", "reproduction_rate", col = plot_cols, main = "Reproduction rate")
plot(sim, "species_1", "carrying_capacity", col = plot_cols, main = "Carrying capacity")
Note that these results show an “everything else equal” scenario, where the only variable is the temperature. In a more realistic scenario, the suitability of the habitat might also influence the reproduction rate and carrying capacity or the mean individual body mass might change with the temperature and change the results.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. and West, G.B. (2004). Toward a Metabolic Theory of Ecology. Ecology, 85: 1771-1789. doi:10.1890/03-9000
Brown, J.H., Sibly, R.M. and Kodric-Brown, A. (2012). Introduction: Metabolism as the Basis for a Theoretical Unification of Ecology. In: Metabolic Ecology (eds R.M. Sibly, J.H. Brown and A. Kodric-Brown). doi:10.1002/9781119968535.ch
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.