library(metacor)
# Example dataset (for pre/post design only)
df <- data.frame(
study_name = c("Study1", "Study2", "Study3", "Study4","Study5", "Study6", "Study7", "Study8", "Study9"),
p_value_Int = c(1.038814e-07, NA, NA, NA, NA, 2.100000e-02, NA, NA, NA),
n_Int = c(10, 10, 10, 10, 15, 15, 10, 10, 10),
meanPre_Int = c(8.17, 10.09, 10.18, 9.85, 9.51,7.70, 10.00, 11.53, 11.20),
meanPost_Int = c(10.12, 12.50, 12.56,10.41, 10.88, 9.20, 10.80,13.42,12.00),
sd_pre_Int = c(1.83,0.67,0.66,0.90,0.62, 0.90, 0.70, 0.60, 1.90),
sd_post_Int = c(1.85, 0.72, 0.97, 0.67, 0.76, 1.10, 0.70,0.80,1.80),
upperCI_Int = c(NA, NA,NA, NA,NA, NA,NA, NA, NA),
lowerCI_Int = c(NA, NA,NA, NA,NA, NA,NA, NA, NA))
results <- metacor_dual(df,
digits = 3,
method = "both",
apply_hedges = TRUE,
add_to_df = TRUE,
SMD_method = "SMDpre",
MeanDifferences = TRUE,
impute_method = "cv",
verbose = TRUE,
report_imputations = TRUE,
custom_sd_diff_int = NULL,
custom_sd_diff_con = NULL,
single_group = TRUE)
#> Warning in metacor_dual(df, digits = 3, method = "both", apply_hedges = TRUE, : Row 6: r_int = -1.5024 (outside [-0.9999, 0.9999]) calculated from input data.
#> Check input values or p-value/CI for possible inconsistencies.
#> r_int set to NA.