The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
Download a copy of the vignette to follow along here: feature_plots.Rmd
Given a cluster solution formatted as a row of a solutions matrix (or
extended solutions matrix) and a data_list
and/or
target_list
containing features to plot, the
auto_plot()
function can automatically generate
ggplot
-based bar and jitter plots showing how that
particular feature was divided across clusters.
library(metasnf)
data_list <- generate_data_list(
list(subc_v, "subcortical_volume", "neuroimaging", "continuous"),
list(income, "household_income", "demographics", "continuous"),
list(fav_colour, "favourite_colour", "misc", "categorical"),
list(pubertal, "pubertal_status", "demographics", "continuous"),
list(anxiety, "anxiety", "behaviour", "ordinal"),
list(depress, "depressed", "behaviour", "ordinal"),
uid = "unique_id"
)
## Warning in generate_data_list(list(subc_v, "subcortical_volume",
## "neuroimaging", : 188 subject(s) dropped due to incomplete data.
# Build space of settings to cluster over
set.seed(42)
settings_matrix <- generate_settings_matrix(
data_list,
nrow = 2,
min_k = 20,
max_k = 50
)
# Clustering
solutions_matrix <- batch_snf(data_list, settings_matrix)
sm_row <- solutions_matrix[1, ]
Note, the row you pick could come directly from a
solutions_matrix
, but could also come from an
extended_solutions_matrix
or from a representative solution
picked after get_representative_solutions()
.
## [1] "smri_vol_scs_cbwmatterlh" "smri_vol_scs_ltventriclelh"
## [3] "smri_vol_scs_inflatventlh" "smri_vol_scs_crbwmatterlh"
## [5] "smri_vol_scs_crbcortexlh" "smri_vol_scs_tplh"
## [7] "smri_vol_scs_caudatelh" "smri_vol_scs_putamenlh"
## [9] "smri_vol_scs_pallidumlh" "smri_vol_scs_3rdventricle"
## [11] "smri_vol_scs_4thventricle" "smri_vol_scs_bstem"
## [13] "smri_vol_scs_hpuslh" "smri_vol_scs_amygdalalh"
## [15] "smri_vol_scs_csf" "smri_vol_scs_aal"
## [17] "smri_vol_scs_vedclh" "smri_vol_scs_cbwmatterrh"
## [19] "smri_vol_scs_ltventriclerh" "smri_vol_scs_inflatventrh"
## [21] "smri_vol_scs_crbwmatterrh" "smri_vol_scs_crbcortexrh"
## [23] "smri_vol_scs_tprh" "smri_vol_scs_caudaterh"
## [25] "smri_vol_scs_putamenrh" "smri_vol_scs_pallidumrh"
## [27] "smri_vol_scs_hpusrh" "smri_vol_scs_amygdalarh"
## [29] "smri_vol_scs_aar" "smri_vol_scs_vedcrh"
## [31] "household_income" "colour"
## [33] "pubertal_status" "cbcl_anxiety_r"
## [35] "cbcl_depress_r"
If there’s something you’d like to change about the plot, you can
always tack on ggplot2
elements to build from the skeleton
provided by auto_plot
:
plot_list$"colour" +
ggplot2::labs(
fill = "Favourite Colour",
x = "Cluster",
title = "Favourite Colour by Cluster"
) +
ggplot2::scale_fill_manual(
values = c(
"green" = "forestgreen",
"red" = "firebrick3",
"yellow" = "darkgoldenrod1"
)
)
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.