The hardware and bandwidth for this mirror is donated by METANET, the Webhosting and Full Service-Cloud Provider.
If you wish to report a bug, or if you are interested in having us mirror your free-software or open-source project, please feel free to contact us at mirror[@]metanet.ch.
TMoE (t Mixture-of-Experts) provides a flexible and robust modelling framework for heterogenous data with possibly heavy-tailed distributions and corrupted by atypical observations. TMoE consists of a mixture of K t expert regressors network (of degree p) gated by a softmax gating network (of degree q) and is represented by:
alpha
’s of the softmax net.beta
’s, scale parameters sigma
’s, and the degree of freedom (robustness) parameters nu
’s. TMoE thus generalises mixtures of (normal, t, and) distributions and mixtures of regressions with these distributions. For example, when \(q=0\), we retrieve mixtures of (t-, or normal) regressions, and when both \(p=0\) and \(q=0\), it is a mixture of (t-, or normal) distributions. It also reduces to the standard (normal, t) distribution when we only use a single expert (\(K=1\)).Model estimation/learning is performed by a dedicated expectation conditional maximization (ECM) algorithm by maximizing the observed data log-likelihood. We provide simulated examples to illustrate the use of the model in model-based clustering of heterogeneous regression data and in fitting non-linear regression functions.
It was written in R Markdown, using the knitr package for production.
See help(package="meteorits")
for further details and references provided by citation("meteorits")
.
n <- 500 # Size of the sample
alphak <- matrix(c(0, 8), ncol = 1) # Parameters of the gating network
betak <- matrix(c(0, -2.5, 0, 2.5), ncol = 2) # Regression coefficients of the experts
sigmak <- c(0.5, 0.5) # Standard deviations of the experts
nuk <- c(5, 7) # Degrees of freedom of the experts network t densities
x <- seq.int(from = -1, to = 1, length.out = n) # Inputs (predictors)
# Generate sample of size n
sample <- sampleUnivTMoE(alphak = alphak, betak = betak, sigmak = sigmak,
nuk = nuk, x = x)
y <- sample$y
tmoe <- emTMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM - tMoE: Iteration: 1 | log-likelihood: -529.945288794032
## EM - tMoE: Iteration: 2 | log-likelihood: -527.348101613744
## EM - tMoE: Iteration: 3 | log-likelihood: -526.697258494959
## EM - tMoE: Iteration: 4 | log-likelihood: -526.100920519297
## EM - tMoE: Iteration: 5 | log-likelihood: -525.530707141445
## EM - tMoE: Iteration: 6 | log-likelihood: -525.004975573049
## EM - tMoE: Iteration: 7 | log-likelihood: -524.537304371765
## EM - tMoE: Iteration: 8 | log-likelihood: -524.134230296182
## EM - tMoE: Iteration: 9 | log-likelihood: -523.796173749721
## EM - tMoE: Iteration: 10 | log-likelihood: -523.519134936736
## EM - tMoE: Iteration: 11 | log-likelihood: -523.296473104273
## EM - tMoE: Iteration: 12 | log-likelihood: -523.120395143099
## EM - tMoE: Iteration: 13 | log-likelihood: -522.983018797515
## EM - tMoE: Iteration: 14 | log-likelihood: -522.877027662562
## EM - tMoE: Iteration: 15 | log-likelihood: -522.796003916234
## EM - tMoE: Iteration: 16 | log-likelihood: -522.734538519799
## EM - tMoE: Iteration: 17 | log-likelihood: -522.68820514474
## EM - tMoE: Iteration: 18 | log-likelihood: -522.653461853027
## EM - tMoE: Iteration: 19 | log-likelihood: -522.627523155938
## EM - tMoE: Iteration: 20 | log-likelihood: -522.608228167519
## EM - tMoE: Iteration: 21 | log-likelihood: -522.593918674577
## EM - tMoE: Iteration: 22 | log-likelihood: -522.583333279152
## EM - tMoE: Iteration: 23 | log-likelihood: -522.57551921559
## EM - tMoE: Iteration: 24 | log-likelihood: -522.569760986911
## EM - tMoE: Iteration: 25 | log-likelihood: -522.565523823543
tmoe$summary()
## -------------------------------------
## Fitted t Mixture-of-Experts model
## -------------------------------------
##
## tMoE model with K = 2 experts:
##
## log-likelihood df AIC BIC ICL
## -522.5655 10 -532.5655 -553.6386 -553.6456
##
## Clustering table (Number of observations in each expert):
##
## 1 2
## 249 251
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2)
## 1 0.01321746 0.2258488
## X^1 2.55858529 -2.8607695
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2)
## 0.2821912 0.4560227
tmoe <- emTMoE(X = x, Y = y, K, p, q, n_tries, max_iter,
threshold, verbose, verbose_IRLS)
## EM - tMoE: Iteration: 1 | log-likelihood: -607.963023404096
## EM - tMoE: Iteration: 2 | log-likelihood: -603.530462450757
## EM - tMoE: Iteration: 3 | log-likelihood: -600.936924880401
## EM - tMoE: Iteration: 4 | log-likelihood: -597.134488483045
## EM - tMoE: Iteration: 5 | log-likelihood: -587.345068256529
## EM - tMoE: Iteration: 6 | log-likelihood: -579.214908026282
## EM - tMoE: Iteration: 7 | log-likelihood: -575.789415000413
## EM - tMoE: Iteration: 8 | log-likelihood: -574.743067640861
## EM - tMoE: Iteration: 9 | log-likelihood: -573.824355322963
## EM - tMoE: Iteration: 10 | log-likelihood: -572.704434066976
## EM - tMoE: Iteration: 11 | log-likelihood: -571.456957238225
## EM - tMoE: Iteration: 12 | log-likelihood: -570.311351216642
## EM - tMoE: Iteration: 13 | log-likelihood: -569.295154539063
## EM - tMoE: Iteration: 14 | log-likelihood: -568.319884936335
## EM - tMoE: Iteration: 15 | log-likelihood: -567.372601882285
## EM - tMoE: Iteration: 16 | log-likelihood: -566.478212031608
## EM - tMoE: Iteration: 17 | log-likelihood: -565.659310717143
## EM - tMoE: Iteration: 18 | log-likelihood: -564.901676479101
## EM - tMoE: Iteration: 19 | log-likelihood: -564.155447286696
## EM - tMoE: Iteration: 20 | log-likelihood: -563.446620149915
## EM - tMoE: Iteration: 21 | log-likelihood: -562.937110761917
## EM - tMoE: Iteration: 22 | log-likelihood: -562.667086966818
## EM - tMoE: Iteration: 23 | log-likelihood: -562.520110670808
## EM - tMoE: Iteration: 24 | log-likelihood: -562.426801842479
## EM - tMoE: Iteration: 25 | log-likelihood: -562.361727752526
## EM - tMoE: Iteration: 26 | log-likelihood: -562.314424482959
## EM - tMoE: Iteration: 27 | log-likelihood: -562.279516472013
## EM - tMoE: Iteration: 28 | log-likelihood: -562.253254369394
## EM - tMoE: Iteration: 29 | log-likelihood: -562.233295182051
## EM - tMoE: Iteration: 30 | log-likelihood: -562.217975445467
## EM - tMoE: Iteration: 31 | log-likelihood: -562.206116173187
## EM - tMoE: Iteration: 32 | log-likelihood: -562.196865909629
## EM - tMoE: Iteration: 33 | log-likelihood: -562.189597689509
## EM - tMoE: Iteration: 34 | log-likelihood: -562.183858578194
## EM - tMoE: Iteration: 35 | log-likelihood: -562.179299411545
tmoe$summary()
## -------------------------------------
## Fitted t Mixture-of-Experts model
## -------------------------------------
##
## tMoE model with K = 4 experts:
##
## log-likelihood df AIC BIC ICL
## -562.1793 26 -588.1793 -625.7538 -625.7472
##
## Clustering table (Number of observations in each expert):
##
## 1 2 3 4
## 28 37 32 36
##
## Regression coefficients:
##
## Beta(k = 1) Beta(k = 2) Beta(k = 3) Beta(k = 4)
## 1 -1.0422893 1008.728925 -2132.506787 654.7349946
## X^1 -0.1089089 -105.713093 135.481456 -27.8267024
## X^2 -0.0079480 2.481934 -2.112076 0.2888205
##
## Variances:
##
## Sigma2(k = 1) Sigma2(k = 2) Sigma2(k = 3) Sigma2(k = 4)
## 1.596783 440.1084 473.8641 30.5968
These binaries (installable software) and packages are in development.
They may not be fully stable and should be used with caution. We make no claims about them.